• Nov 19, 2022 •CodeCatch
0 likes • 0 views
# Given a number n, print all primes smaller than or equal to n. It is also given that n is a small number. # For example, if n is 10, the output should be “2, 3, 5, 7”. If n is 20, the output should be “2, 3, 5, 7, 11, 13, 17, 19”. # Python program to print all primes smaller than or equal to # n using Sieve of Eratosthenes def SieveOfEratosthenes(n): # Create a boolean array "prime[0..n]" and initialize # all entries it as true. A value in prime[i] will # finally be false if i is Not a prime, else true. prime = [True for i in range(n + 1)] p = 2 while (p * p <= n): # If prime[p] is not changed, then it is a prime if (prime[p] == True): # Update all multiples of p for i in range(p * 2, n + 1, p): prime[i] = False p += 1 prime[0]= False prime[1]= False # Print all prime numbers for p in range(n + 1): if prime[p]: print (p) # driver program if __name__=='__main__': n = 30 print("Following are the prime numbers smaller") print("than or equal to ", n) print("than or equal to ", n) SieveOfEratosthenes(n)
• Jul 24, 2024 •AustinLeath
0 likes • 3 views
from statistics import median, mean, mode def print_stats(array): print(array) print("median =", median(array)) print("mean =", mean(array)) print("mode =", mode(array)) print() print_stats([1, 2, 3, 3, 4]) print_stats([1, 2, 3, 3])
• Apr 21, 2023 •sebastianagauyao2002-61a8
0 likes • 4 views
print("hellur")
0 likes • 1 view
def print_pyramid_pattern(n): # outer loop to handle number of rows # n in this case for i in range(0, n): # inner loop to handle number of columns # values changing acc. to outer loop for j in range(0, i+1): # printing stars print("* ",end="") # ending line after each row print("\r") print_pyramid_pattern(10)
• Nov 18, 2022 •AustinLeath
# List lst = [1, 2, 3, 'Alice', 'Alice'] # One-Liner indices = [i for i in range(len(lst)) if lst[i]=='Alice'] # Result print(indices) # [3, 4]
• Dec 18, 2025 •CodeCatch
def insertion_sort(arr): # Traverse through 1 to len(arr) for i in range(1, len(arr)): key = arr[i] # Move elements of arr[0..i-1], that are greater than key, # to one position ahead of their current position j = i - 1 while j >= 0 and key < arr[j]: arr[j + 1] = arr[j] j -= 1 arr[j + 1] = key # Example usage: arr = [12, 11, 13, 5, 6, 7, 8, 10] insertion_sort(arr) print("Sorted array is:", arr)