Loading...
More Python Posts
#SetsU = {0,1,2,3,4,5,6,7,8,9}P = {1,2,3,4}Q = {4,5,6}R = {3,4,6,8,9}def set2bits(xs,us) :bs=[]for x in us :if x in xs :bs.append(1)else:bs.append(0)assert len(us) == len(bs)return bsdef union(set1,set2) :finalSet = set()bitList1 = set2bits(set1, U)bitList2 = set2bits(set2, U)for i in range(len(U)) :if(bitList1[i] or bitList2[i]) :finalSet.add(i)return finalSetdef intersection(set1,set2) :finalSet = set()bitList1 = set2bits(set1, U)bitList2 = set2bits(set2, U)for i in range(len(U)) :if(bitList1[i] and bitList2[i]) :finalSet.add(i)return finalSetdef compliment(set1) :finalSet = set()bitList = set2bits(set1, U)for i in range(len(U)) :if(not bitList[i]) :finalSet.add(i)return finalSetdef implication(a,b):return union(compliment(a), b)################################################################################################################# Problems 1-6 ###################################################################################################################################p \/ (q /\ r) = (p \/ q) /\ (p \/ r)def prob1():return union(P, intersection(Q,R)) == intersection(union(P,Q), union(P,R))#p /\ (q \/ r) = (p /\ q) \/ (p /\ r)def prob2():return intersection(P, union(Q,R)) == union(intersection(P,Q), intersection(P,R))#~(p /\ q) = ~p \/ ~qdef prob3():return compliment(intersection(P,R)) == union(compliment(P), compliment(R))#~(p \/ q) = ~p /\ ~qdef prob4():return compliment(union(P,Q)) == intersection(compliment(P), compliment(Q))#(p=>q) = (~q => ~p)def prob5():return implication(P,Q) == implication(compliment(Q), compliment(P))#(p => q) /\ (q => r) => (p => r)def prob6():return implication(intersection(implication(P,Q), implication(Q,R)), implication(P,R))print("Problem 1: ", prob1())print("Problem 2: ", prob2())print("Problem 3: ", prob3())print("Problem 4: ", prob4())print("Problem 5: ", prob5())print("Problem 6: ", prob6())'''Problem 1: TrueProblem 2: TrueProblem 3: TrueProblem 4: TrueProblem 5: TrueProblem 6: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}'''
print(“Hello World”)
def key_of_min(d):return min(d, key = d.get)key_of_min({'a':4, 'b':0, 'c':13}) # b
# Python program for implementation of Selection# Sortimport sysA = [64, 25, 12, 22, 11]# Traverse through all array elementsfor i in range(len(A)):# Find the minimum element in remaining# unsorted arraymin_idx = ifor j in range(i+1, len(A)):if A[min_idx] > A[j]:min_idx = j# Swap the found minimum element with# the first elementA[i], A[min_idx] = A[min_idx], A[i]# Driver code to test aboveprint ("Sorted array")for i in range(len(A)):print("%d" %A[i]),
import mathdef factorial(n):print(math.factorial(n))return (math.factorial(n))factorial(5)factorial(10)factorial(15)
weigh = lambda a,b: sum(b)-sum(a)FindCoin = lambda A: 0 if (n := len(A)) == 1 else (m := n//3) * (w := 1 + weigh(A[:m], A[2*m:])) + FindCoin(A[m*w:m*(w+1)])print(FindCoin([1,1,1,1,1,1,1,2,1]))