Skip to main content

Delete all even numbers

Nov 19, 2022CodeCatch
Loading...

More Python Posts

AnyTree Randomizer

Apr 15, 2021NoahEaton

0 likes • 0 views

import anytree as at
import random as rm
# Generate a tree with node_count many nodes. Each has a number key that shows when it was made and a randomly selected color, red or white.
def random_tree(node_count):
# Generates the list of nodes
nodes = []
for i in range(node_count):
test = rm.randint(1,2)
if test == 1:
nodes.append(at.Node(str(i),color="white"))
else:
nodes.append(at.Node(str(i),color="red"))
#Creates the various main branches
for i in range(node_count):
for j in range(i, len(nodes)):
test = rm.randint(1,len(nodes))
if test == 1 and nodes[j].parent == None and (not nodes[i] == nodes[j]):
nodes[j].parent = nodes[i]
#Collects all the main branches into a single tree with the first node being the root
for i in range(1, node_count):
if nodes[i].parent == None and (not nodes[i] == nodes[0]):
nodes[i].parent = nodes[0]
return nodes[0]

Input 2D Matrix

Nov 19, 2022CodeCatch

0 likes • 2 views

# Input for row and column
R = int(input())
C = int(input())
# Using list comprehension for input
matrix = [[int(input()) for x in range (C)] for y in range(R)]

curry function

Nov 19, 2022CodeCatch

0 likes • 1 view

from functools import partial
def curry(fn, *args):
return partial(fn, *args)
add = lambda x, y: x + y
add10 = curry(add, 10)
add10(20) # 30

Calculator

Nov 19, 2022CodeCatch

0 likes • 0 views

""" Calculator
----------------------------------------
"""
def addition ():
print("Addition")
n = float(input("Enter the number: "))
t = 0 //Total number enter
ans = 0
while n != 0:
ans = ans + n
t+=1
n = float(input("Enter another number (0 to calculate): "))
return [ans,t]
def subtraction ():
print("Subtraction");
n = float(input("Enter the number: "))
t = 0 //Total number enter
sum = 0
while n != 0:
ans = ans - n
t+=1
n = float(input("Enter another number (0 to calculate): "))
return [ans,t]
def multiplication ():
print("Multiplication")
n = float(input("Enter the number: "))
t = 0 //Total number enter
ans = 1
while n != 0:
ans = ans * n
t+=1
n = float(input("Enter another number (0 to calculate): "))
return [ans,t]
def average():
an = []
an = addition()
t = an[1]
a = an[0]
ans = a / t
return [ans,t]
// main...
while True:
list = []
print(" My first python program!")
print(" Simple Calculator in python by Malik Umer Farooq")
print(" Enter 'a' for addition")
print(" Enter 's' for substraction")
print(" Enter 'm' for multiplication")
print(" Enter 'v' for average")
print(" Enter 'q' for quit")
c = input(" ")
if c != 'q':
if c == 'a':
list = addition()
print("Ans = ", list[0], " total inputs ",list[1])
elif c == 's':
list = subtraction()
print("Ans = ", list[0], " total inputs ",list[1])
elif c == 'm':
list = multiplication()
print("Ans = ", list[0], " total inputs ",list[1])
elif c == 'v':
list = average()
print("Ans = ", list[0], " total inputs ",list[1])
else:
print ("Sorry, invilid character")
else:
break

UNT CSCE 2100 Assignment 6

Nov 18, 2022AustinLeath

0 likes • 0 views

"""
Assignment 6
The goal is to make a graph of
who bit who and who was bitten.
There should be 10 nodes and 15 edges.
3 arrows of biting each other and
3 arrows of someone biting themselves.
Networkx can not do self biting
arrows, but it is in the code.
"""
from graphviz import Digraph as DDotGraph
from graphviz import Graph as UDotGraph
import networkx as nx
from networkx.algorithms.dag import transitive_closure
import graphviz as gv
import matplotlib.pyplot as plt
import numpy as np
from numpy.linalg import matrix_power
"""
class DGraph:
def __init__(self):
self.d = dict()
def clear(self):
self.d = dict()
def add_node(self,n):
if not self.d.get(n):
self.d[n] = set()
def add_edge(self,e):
f,t=e
self.add_node(f)
self.add_node(t)
vs=self.d.get(f)
if not vs:
self.d[f] = {t}
else:
vs.add(t)
def add_edges_from(self,es):
for e in es:
self.add_edge(e)
def edges(self):
for f in self.d:
for t in self.d[f]:
yield (f,t)
def number_of_nodes(self):
return len(self.d)
def __repr__(self):
return self.d.__repr__()
def show(self):
dot = gv.Digraph()
for e in self.edges():
#print(e)
f, t = e
dot.edge(str(f), str(t), label='')
#print(dot.source)
show(dot)
# displays graph with graphviz
def show(dot, show=True, file_name='graph.gv'):
dot.render(file_name, view=show)
def showGraph(g,label="",directed=True):
if directed:
dot = gv.Digraph()
else:
dot = gv.Graph()
for e in g.edges():
print(e)
f, t = e
dot.edge(str(f), str(t), label=label)
print(dot.source)
show(dot)
def bit():
G = DGraph()
G.add_edge(("Blade","Samara"))
G.add_edge(("Shadow","Wolfe"))
G.add_edge(("Raven", "Austin"))
G.add_edge(("Blade", "Alice"))
G.add_edge(("Alice","Brandon"))
G.add_edge(("Blade", "Wolfe"))
G.add_edge(("Samara", "Robin"))
G.add_edge(("Samara", "Raven"))
G.add_edge(("Samara", "Hamed"))
G.add_edge(("Wolfe", "Blade"))
G.add_edge(("Hamed", "Samara"))
G.add_edge(("Wolfe", "Shadow"))
G.add_edge(("Brandon", "Brandon"))
G.add_edge(("Hamed", "Hamed"))
G.add_edge(("Austin", "Austin"))
showGraph(G, label="bit")
bit()
def bitten():
G=DGraph()
G.add_edge(("Samara","Blade"))
G.add_edge(("Wolfe","Shadow"))
G.add_edge(("Austin", "Raven"))
G.add_edge(("Alice","Blade"))
G.add_edge(("Brandon", "Alice"))
G.add_edge(("Wolfe", "Blade" ))
G.add_edge(("Robin", "Samara"))
G.add_edge(("Raven", "Samara"))
G.add_edge(("Hamed", "Samara"))
G.add_edge(("Blade", "Wolfe"))
G.add_edge(("Samara", "Hamed"))
G.add_edge(("Shadow", "Wolfe"))
G.add_edge(("Brandon", "Brandon"))
G.add_edge(("Hamed", "Hamed"))
G.add_edge(("Austin", "Austin"))
showGraph(G, label="bitten by")
#bitten()
family = ["Blade", "Samara", "Shadow", "Wolfe", "Raven", "Alice"]
"""
#Do transitive closure call out and the
#matrix power operation should be the same
D = nx.DiGraph()
#D.add_nodes_from("SamaraBladeWolfeShadowAliceRavenBrandonRobinHamedAustin")
D.add_edge("Blade","Samara")
D.add_edge("Shadow","Wolfe")
D.add_edge("Raven", "Austin")
D.add_edge("Blade", "Alice")
D.add_edge("Alice","Brandon")
D.add_edge("Blade", "Wolfe")
D.add_edge("Samara", "Robin")
D.add_edge("Samara", "Raven")
D.add_edge("Samara", "Hamed")
D.add_edge("Wolfe", "Blade")
D.add_edge("Hamed", "Samara")
D.add_edge("Wolfe", "Shadow")
D.add_edge("Brandon", "Brandon")
D.add_edge("Hamed", "Hamed")
D.add_edge("Austin", "Austin")
T = transitive_closure(D)
for e in D.edges(): print(e)
for n in D.nodes(): print(n)
def show(H):
nx.draw(H, with_labels=True, font_weight='bold')
plt.show()
#Use nx.to_numpy_matrix instead of nx.adjacency_matrix
# M = nx.adjacency_matrix(D)
# MT = nx.adjacency_matrix(T)
M = nx.to_numpy_matrix(D)
MT = nx.to_numpy_matrix(T)
M2 = M@M
def mPower(M, k): #M is numpy matrix
assert k >= 1
P = M
for _ in range(k):
P = P @ M
return P
def tc(M):
#compute transitive closure
pass
D1 = nx.DiGraph(M)
D2 = nx.DiGraph(M2)
print('Matrix for Original\n', M)
N = nx.to_numpy_array(D,dtype=int)
print('np_array for Original\n', N)
print('\nMatrix for Transitive Closure\n', MT)
N2 = nx.to_numpy_array(T,dtype=int)
print('np_array for Transitive Closure\n', N2)
show(D) #can use D, T, and numpy matrix power operation
show(T)
show(T)

Bitwise Lambda Overflow Calculations

Aug 12, 2024AustinLeath

0 likes • 5 views

magnitude = lambda bits: 1_000_000_000_000_000_000 % (2 ** bits)
sign = lambda bits: -1 ** (1_000_000_000_000_000_000 // (2 ** bits))
print("64 bit sum:", magnitude(64) * sign(64))
print("32 bit sum:", magnitude(32) * sign(32))
print("16 bit sum:", magnitude(16) * sign(16))