Skip to main content
Loading...

More Python Posts

import re

def _map_ikev2_vendor_capabilities(message_type, input_string):
    # List of acceptable message types
    valid_message_types = ['IKE_SA_INIT', 'IKE_AUTH']
    
    # Validate message type
    if message_type not in valid_message_types:
        raise ValueError(f"Invalid message type: {message_type}. Must be one of {valid_message_types}")
    
    # Mapping dictionary for IKE values with RFC references
    value_map = {
        # IKE_SA_INIT capabilities
        'FRAG_SUP': 'IKE Fragmentation',  # RFC 7383, Section 3
        'REDIR_SUP': 'Redirection',  # RFC 5685, Section 3
        'HASH_ALG': 'Hash Algorithms',  # RFC 7296, Section 3.3.2
        'NATD_S_IP': 'NAT-T (Source IP)',  # RFC 7296, Section 2.23
        'NATD_D_IP': 'NAT-T (Destination IP)',  # RFC 7296, Section 2.23
        'SIGN_HASH_ALGS': 'Signature Hash Algorithms',  # RFC 7296, Section 2.15
        'NON_FIRST_FRAGMENTS': 'Non-First IKE Fragments',  # RFC 7383, Section 3
        'CHILDLESS_IKEV2_SUP': 'Childless IKEv2',  # RFC 6023, Section 3
        'INTERMEDIATE': 'Intermediate Exchange',  # RFC 9242, Section 3
        'COOKIE': 'Cookie-Based DoS Protection',  # RFC 7296, Section 2.6
        # IKE_AUTH capabilities
        'ESP_TFC_PAD_N': 'ESPv3 TFC Padding Not Supported',  # RFC 7296, Section 3.3.1
        'MOBIKE_SUP': 'MOBIKE',  # RFC 4555, Section 3
        'MULT_AUTH': 'Multiple Auth',  # RFC 4739, Section 3
        'EAP_ONLY': 'EAP-Only Auth',  # RFC 5998, Section 3
        'MSG_ID_SYN_SUP': 'Message ID Sync',  # RFC 6311, Section 3
        'IPCOMP_SUPPORTED': 'IP Payload Compression Support',  # RFC 7296, Section 3.3.2
        'ADD_4_ADDR': 'Additional IPv4 Addresses',  # RFC 4555, Section 3.2
        'ADD_6_ADDR': 'Additional IPv6 Addresses',  # RFC 4555, Section 3.2
        'INIT_CONTACT': 'Initial Contact',  # RFC 7296, Section 3.16
        'HTTP_CERT_LOOKUP_SUP': 'HTTP Certificate Lookup',  # RFC 7296, Section 3.7
        'REKEY_SA': 'SA Rekeying'  # RFC 7296, Section 3.16
    }
    
    # Notifications valid for each message type
    ike_sa_init_valid = {
        'FRAG_SUP', 'REDIR_SUP', 'HASH_ALG', 'NATD_S_IP', 'NATD_D_IP',
        'SIGN_HASH_ALGS', 'NON_FIRST_FRAGMENTS', 'CHILDLESS_IKEV2_SUP',
        'INTERMEDIATE', 'COOKIE'
    }
    ike_auth_valid = {
        'ESP_TFC_PAD_N', 'MOBIKE_SUP', 'MULT_AUTH', 'EAP_ONLY', 'MSG_ID_SYN_SUP',
        'IPCOMP_SUPPORTED', 'ADD_4_ADDR', 'ADD_6_ADDR', 'INIT_CONTACT',
        'HTTP_CERT_LOOKUP_SUP', 'REKEY_SA'
    }
    
    # Select valid notifications based on message type
    valid_notifications = ike_sa_init_valid if message_type == 'IKE_SA_INIT' else ike_auth_valid
    
    # Regex to capture N(...) patterns
    pattern = r'N\([^)]+\)'
    matches = re.findall(pattern, input_string)
    
    # Parse matches and create result list
    result = []
    for match in matches:
        key = match[2:-1]  # Extract content inside N(...)
        if key in valid_notifications and key in value_map:
            result.append(value_map[key])
        else:
            # Log unrecognized notifications for debugging
            print(f"Warning: Unrecognized or invalid notification for {message_type}: {key}")
    
    return ', '.join(result) if result else 'None'

# Example usage
ike_sa_init_string = '2025-07-18 20:16:22.839 15[ENC] <4> parsed IKE_SA_INIT request 0 [ SA KE No N(NATD_S_IP) N(NATD_D_IP) N(FRAG_SUP) N(HASH_ALG) N(REDIR_SUP) N(SIGN_HASH_ALGS) N(NON_FIRST_FRAGMENTS) N(CHILDLESS_IKEV2_SUP) N(INTERMEDIATE) N(COOKIE) ]'
ike_auth_string = '2025-07-18 20:16:22.898 07[ENC] <4> parsed IKE_AUTH request 1 [ IDi N(INIT_CONTACT) IDr AUTH N(ESP_TFC_PAD_N) SA TSi TSr N(MOBIKE_SUP) N(ADD_4_ADDR) N(MULT_AUTH) N(EAP_ONLY) N(MSG_ID_SYN_SUP) N(IPCOMP_SUPPORTED) N(ADD_6_ADDR) N(HTTP_CERT_LOOKUP_SUP) N(REKEY_SA) ]'

# Test with IKE_SA_INIT
print("IKE_SA_INIT Results:")
print(_map_ikev2_vendor_capabilities("IKE_SA_INIT", ike_sa_init_string))

# Test with IKE_AUTH
print("\nIKE_AUTH Results:")
print(_map_ikev2_vendor_capabilities("IKE_AUTH", ike_auth_string))
def parse_ike_proposal(proposal):
    """
    Parse an IKE or ESP proposal string to extract encryption, hash, and DH group in human-readable format.
    
    Args:
        proposal (str): IKE or ESP proposal string, e.g., 'IKE:AES_CBC_128/HMAC_SHA1_96/PRF_HMAC_SHA1/MODP_1024'
                        or 'IKE:AES_GCM_16_256/PRF_HMAC_SHA2_256/ECP_384' or 'ESP:AES_CBC_256/HMAC_SHA1_96/NO_EXT_SEQ'
    
    Returns:
        dict: Dictionary with encryption, hash, and DH group in human-readable format
    """
    dh_mapping = {
        # Standard MODP groups from RFC 2409 and RFC 3526
        'MODP_768': '1',   # 768-bit MODP group
        'MODP_1024': '2',  # 1024-bit MODP group
        'MODP_1536': '5',  # 1536-bit MODP group
        'MODP_2048': '14', # 2048-bit MODP group
        'MODP_3072': '15', # 3072-bit MODP group
        'MODP_4096': '16', # 4096-bit MODP group
        'MODP_6144': '17', # 6144-bit MODP group
        'MODP_8192': '18', # 8192-bit MODP group
        # Elliptic Curve groups from RFC 5114 and RFC 5903
        'ECP_256': '19',   # 256-bit ECP group
        'ECP_384': '20',   # 384-bit ECP group
        'ECP_521': '21',   # 521-bit ECP group
        'ECP_192': '25',   # 192-bit ECP group
        'ECP_224': '26',   # 224-bit ECP group
        # MODP groups with subgroup sizes from RFC 5114
        'MODP_1024_160': '22', # 1024-bit MODP with 160-bit subgroup
        'MODP_2048_224': '23', # 2048-bit MODP with 224-bit subgroup
        'MODP_2048_256': '24', # 2048-bit MODP with 256-bit subgroup
        # Additional groups from RFC 7919 (FFDHE - Finite Field Diffie-Hellman Ephemeral)
        'FFDHE_2048': '256', # 2048-bit FFDHE group
        'FFDHE_3072': '257', # 3072-bit FFDHE group
        'FFDHE_4096': '258', # 4096-bit FFDHE group
        'FFDHE_6144': '259', # 6144-bit FFDHE group
        'FFDHE_8192': '260', # 8192-bit FFDHE group
        # Brainpool curves from RFC 6954
        'BRAINPOOL_P256R1': '28', # 256-bit Brainpool curve
        'BRAINPOOL_P384R1': '29', # 384-bit Brainpool curve
        'BRAINPOOL_P512R1': '30', # 512-bit Brainpool curve
        # Modern elliptic curve groups from RFC 8031
        'CURVE25519': '31', # 256-bit elliptic curve (Curve25519, 128-bit security)
        'CURVE448': '32',   # 448-bit elliptic curve (Curve448, 224-bit security)
    }
    
    enc_mapping = {
        # AES in CBC mode (RFC 3602, commonly used in IPsec and TLS)
        'AES_CBC_128': 'AES-128',       # 128-bit key, CBC mode
        'AES_CBC_192': 'AES-192',       # 192-bit key, CBC mode
        'AES_CBC_256': 'AES-256',       # 256-bit key, CBC mode
        # AES in GCM mode (RFC 4106, authenticated encryption for IPsec/TLS)
        'AES_GCM_16_128': 'AES-GCM-128', # 128-bit key, GCM mode, 16-byte ICV
        'AES_GCM_16_192': 'AES-GCM-192', # 192-bit key, GCM mode, 16-byte ICV
        'AES_GCM_16_256': 'AES-GCM-256', # 256-bit key, GCM mode, 16-byte ICV
        'AES_GCM_8_128': 'AES-GCM-128-8', # 128-bit key, GCM mode, 8-byte ICV
        'AES_GCM_8_256': 'AES-GCM-256-8', # 256-bit key, GCM mode, 8-byte ICV
        'AES_GCM_12_128': 'AES-GCM-128-12', # 128-bit key, GCM mode, 12-byte ICV
        'AES_GCM_12_256': 'AES-GCM-256-12', # 256-bit key, GCM mode, 12-byte ICV
        # AES in CCM mode (RFC 4309, used in IPsec and some wireless protocols)
        'AES_CCM_16_128': 'AES-CCM-128', # 128-bit key, CCM mode, 16-byte ICV
        'AES_CCM_16_256': 'AES-CCM-256', # 256-bit key, CCM mode, 16-byte ICV
        # AES in CTR mode (RFC 3686, used in some VPNs and SSH)
        'AES_CTR_128': 'AES-CTR-128',   # 128-bit key, CTR mode
        'AES_CTR_192': 'AES-CTR-192',   # 192-bit key, CTR mode
        'AES_CTR_256': 'AES-CTR-256',   # 256-bit key, CTR mode
        # Legacy and alternative algorithms
        '3DES_CBC': '3DES',             # Triple DES, CBC mode (RFC 2451, deprecated)
        'DES_CBC': 'DES',               # Single DES, CBC mode (RFC 2405, obsolete)
        'CAMELLIA_CBC_128': 'CAMELLIA-128', # 128-bit Camellia, CBC mode (RFC 5529)
        'CAMELLIA_CBC_256': 'CAMELLIA-256', # 256-bit Camellia, CBC mode (RFC 5529)
        'CHACHA20_POLY1305': 'CHACHA20-POLY1305', # ChaCha20 with Poly1305 (RFC 8032, used in TLS 1.3, OpenVPN)
        'BLOWFISH_CBC': 'BLOWFISH',     # Blowfish, CBC mode (non-standard, used in some OpenSSH/OpenVPN)
        'CAST5_CBC': 'CAST5',           # CAST-128, CBC mode (non-standard, used in some OpenVPN)
        # Null encryption (for testing or integrity-only scenarios, RFC 2410)
        'NULL': 'NULL'                  # No encryption, only integrity protection
    }
    
    hash_mapping = {
        # Legacy hash algorithms (RFC 2403, RFC 2404, deprecated in modern systems)
        'HMAC_MD5': 'MD5',                 # MD5 HMAC, 128-bit output (insecure, legacy use in IPsec/SSH)
        'HMAC_MD5_96': 'MD5-96',           # MD5 HMAC, truncated to 96 bits (IPsec)
        'HMAC_SHA1': 'SHA1',               # SHA1 HMAC, 160-bit output (legacy, used in IPsec/TLS)
        'HMAC_SHA1_96': 'SHA1-96',         # SHA1 HMAC, truncated to 96 bits (IPsec)
        # SHA2-based HMAC algorithms (RFC 4868, used in IPsec, TLS, SSH)
        'HMAC_SHA2_256': 'SHA2-256',       # SHA2-256 HMAC, full 256-bit output
        'HMAC_SHA2_256_128': 'SHA2-256-128', # SHA2-256 HMAC, truncated to 128 bits
        'HMAC_SHA2_384': 'SHA2-384',       # SHA2-384 HMAC, full 384-bit output
        'HMAC_SHA2_384_192': 'SHA2-384-192', # SHA2-384 HMAC, truncated to 192 bits
        'HMAC_SHA2_512': 'SHA2-512',       # SHA2-512 HMAC, full 512-bit output
        'HMAC_SHA2_512_256': 'SHA2-512-256', # SHA2-512 HMAC, truncated to 256 bits
        # SHA3-based HMAC algorithms (RFC 8009, emerging in modern protocols)
        'HMAC_SHA3_224': 'SHA3-224',       # SHA3-224 HMAC, 224-bit output
        'HMAC_SHA3_256': 'SHA3-256',       # SHA3-256 HMAC, 256-bit output
        'HMAC_SHA3_384': 'SHA3-384',       # SHA3-384 HMAC, 384-bit output
        'HMAC_SHA3_512': 'SHA3-512',       # SHA3-512 HMAC, 512-bit output
        # Authenticated encryption integrity (used with AES-GCM/CCM, RFC 4106, RFC 4309)
        'AES_GMAC_128': 'GMAC-128',        # AES-GMAC with 128-bit key
        'AES_GMAC_192': 'GMAC-192',        # AES-GMAC with 192-bit key
        'AES_GMAC_256': 'GMAC-256',        # AES-GMAC with 256-bit key
        # Poly1305 (RFC 8032, used with ChaCha20 in TLS 1.3, OpenVPN)
        'POLY1305': 'POLY1305',            # Poly1305 authenticator, 128-bit output
        # Null authentication (RFC 2410, for testing or encryption-only scenarios)
        'NONE': 'NULL'                     # No integrity protection
    }
    
    # Split the proposal into components
    components = proposal.split('/')
    
    # Initialize result dictionary
    result = {
        'encryption': 'Unknown',
        'hash': 'None',  # Default to 'None' for AEAD ciphers like AES-GCM
        'dh_group': 'None'  # Default to 'None' for ESP or proposals without DH
    }
    
    # Extract components based on expected length
    if len(components) == 4:  # Standard IKE format: IKE:ENC/HASH/PRF/DH
        result['encryption'] = enc_mapping.get(components[0].replace('IKE:', ''), 'Unknown')
        result['hash'] = hash_mapping.get(components[1], 'Unknown')
        result['dh_group'] = dh_mapping.get(components[3], 'None')
    elif len(components) == 3:  # AEAD IKE format: IKE:ENC/PRF/DH or ESP:ENC/HASH/EXT
        result['encryption'] = enc_mapping.get(components[0].replace('IKE:', '').replace('ESP:', ''), 'Unknown')
        if components[0].startswith('IKE:') and components[1].startswith('PRF_'):  # AEAD IKE (e.g., AES-GCM)
            result['hash'] = 'None'
            result['dh_group'] = dh_mapping.get(components[2], 'None')
        else:  # ESP format (e.g., ESP:AES_CBC_256/HMAC_SHA1_96/NO_EXT_SEQ)
            result['hash'] = hash_mapping.get(components[1], 'Unknown')
            result['dh_group'] = 'None'  # ESP proposals typically lack DH groups
    
    return result
 
def process_proposals(proposal_list):
    """
    Process a list of IKE or ESP proposals, grouping by encryption and hash, and listing all DH groups.
    
    Args:
        proposal_list (str): Comma-separated string of IKE or ESP proposals
    
    Returns:
        dict: Dictionary mapping (encryption, hash) tuples to lists of DH groups
    """
    #print("PROPSOSAL LIST:", proposal_list)
    proposals = proposal_list.split(', ')
    grouped_proposals = {}
    
    for proposal in proposals:
        parsed = parse_ike_proposal(proposal.strip())
        key = (parsed['encryption'], parsed['hash'])
        dh_group = parsed['dh_group']
        
        if key not in grouped_proposals:
            grouped_proposals[key] = []
        if dh_group != 'None' and dh_group not in grouped_proposals[key]:
            grouped_proposals[key].append(dh_group)
    
    # Sort DH groups for consistency (numerically by group number)
    for key in grouped_proposals:
        grouped_proposals[key].sort(key=lambda x: int(x))
    
    # Format output as strings
    result = []
    for (enc, hash_val), dh_groups in grouped_proposals.items():
        hash_part = f" Hash {hash_val}" if hash_val != 'None' else ""
        dh_group_part = f" DH Group(s) {' '.join(dh_groups)}" if dh_groups else " DH Group(s) None"
        result.append(f"Encryption {enc}{hash_part}{dh_group_part}")
    
    return result
 
# Example usage
if __name__ == "__main__":
    proposals = """IKE:AES_CBC_128/HMAC_SHA1_96/PRF_HMAC_SHA1/MODP_1024, IKE:AES_CBC_128/HMAC_SHA1_96/PRF_HMAC_SHA1/MODP_2048, IKE:AES_CBC_128/HMAC_SHA1_96/PRF_HMAC_SHA1/MODP_3072, IKE:AES_CBC_128/HMAC_SHA1_96/PRF_HMAC_SHA1/MODP_4096, IKE:AES_CBC_128/HMAC_SHA1_96/PRF_HMAC_SHA1/MODP_6144, IKE:AES_CBC_128/HMAC_SHA1_96/PRF_HMAC_SHA1/MODP_8192, IKE:AES_CBC_128/HMAC_SHA1_96/PRF_HMAC_SHA1/ECP_256, IKE:AES_CBC_128/HMAC_SHA1_96/PRF_HMAC_SHA1/ECP_384, IKE:AES_CBC_128/HMAC_SHA1_96/PRF_HMAC_SHA1/ECP_521, IKE:AES_CBC_128/HMAC_SHA1_96/PRF_HMAC_SHA1/MODP_1024_160, IKE:AES_CBC_128/HMAC_SHA1_96/PRF_HMAC_SHA1/MODP_2048_224, IKE:AES_CBC_128/HMAC_SHA1_96/PRF_HMAC_SHA1/MODP_2048_256, IKE:AES_CBC_128/HMAC_SHA2_256_128/PRF_HMAC_SHA2_256/MODP_1024, IKE:AES_CBC_128/HMAC_SHA2_256_128/PRF_HMAC_SHA2_256/MODP_2048, IKE:AES_CBC_128/HMAC_SHA2_256_128/PRF_HMAC_SHA2_256/MODP_3072, IKE:AES_CBC_128/HMAC_SHA2_256_128/PRF_HMAC_SHA2_256/MODP_4096, IKE:AES_CBC_128/HMAC_SHA2_256_128/PRF_HMAC_SHA2_256/MODP_6144, IKE:AES_CBC_128/HMAC_SHA2_256_128/PRF_HMAC_SHA2_256/MODP_8192, IKE:AES_CBC_128/HMAC_SHA2_256_128/PRF_HMAC_SHA2_256/ECP_256, IKE:AES_CBC_128/HMAC_SHA2_256_128/PRF_HMAC_SHA2_256/ECP_384, IKE:AES_CBC_128/HMAC_SHA2_256_128/PRF_HMAC_SHA2_256/ECP_521, IKE:AES_CBC_128/HMAC_SHA2_256_128/PRF_HMAC_SHA2_256/MODP_1024_160, IKE:AES_CBC_128/HMAC_SHA2_256_128/PRF_HMAC_SHA2_256/MODP_2048_224, IKE:AES_CBC_128/HMAC_SHA2_256_128/PRF_HMAC_SHA2_256/MODP_2048_256, IKE:AES_CBC_128/HMAC_SHA2_384_192/PRF_HMAC_SHA2_384/MODP_1024, IKE:AES_CBC_128/HMAC_SHA2_384_192/PRF_HMAC_SHA2_384/MODP_2048, IKE:AES_CBC_128/HMAC_SHA2_384_192/PRF_HMAC_SHA2_384/MODP_3072, IKE:AES_CBC_128/HMAC_SHA2_384_192/PRF_HMAC_SHA2_384/MODP_4096, IKE:AES_CBC_128/HMAC_SHA2_384_192/PRF_HMAC_SHA2_384/MODP_6144, IKE:AES_CBC_128/HMAC_SHA2_384_192/PRF_HMAC_SHA2_384/MODP_8192, IKE:AES_CBC_128/HMAC_SHA2_384_192/PRF_HMAC_SHA2_384/ECP_256, IKE:AES_CBC_128/HMAC_SHA2_384_192/PRF_HMAC_SHA2_384/ECP_384, IKE:AES_CBC_128/HMAC_SHA2_384_192/PRF_HMAC_SHA2_384/ECP_521, IKE:AES_CBC_128/HMAC_SHA2_384_192/PRF_HMAC_SHA2_384/MODP_1024_160, IKE:AES_CBC_128/HMAC_SHA2_384_192/PRF_HMAC_SHA2_384/MODP_2048_224, IKE:AES_CBC_128/HMAC_SHA2_384_192/PRF_HMAC_SHA2_384/MODP_2048_256, IKE:AES_CBC_128/HMAC_SHA2_512_256/PRF_HMAC_SHA2_512/MODP_1024, IKE:AES_CBC_128/HMAC_SHA2_512_256/PRF_HMAC_SHA2_512/MODP_2048, IKE:AES_CBC_128/HMAC_SHA2_512_256/PRF_HMAC_SHA2_512/MODP_3072, IKE:AES_CBC_128/HMAC_SHA2_512_256/PRF_HMAC_SHA2_512/MODP_4096, IKE:AES_CBC_128/HMAC_SHA2_512_256/PRF_HMAC_SHA2_512/MODP_6144, IKE:AES_CBC_128/HMAC_SHA2_512_256/PRF_HMAC_SHA2_512/MODP_8192, IKE:AES_CBC_128/HMAC_SHA2_512_256/PRF_HMAC_SHA2_512/ECP_256, IKE:AES_CBC_128/HMAC_SHA2_512_256/PRF_HMAC_SHA2_512/ECP_384, IKE:AES_CBC_128/HMAC_SHA2_512_256/PRF_HMAC_SHA2_512/ECP_521, IKE:AES_CBC_128/HMAC_SHA2_512_256/PRF_HMAC_SHA2_512/MODP_1024_160, IKE:AES_CBC_128/HMAC_SHA2_512_256/PRF_HMAC_SHA2_512/MODP_2048_224, IKE:AES_CBC_128/HMAC_SHA2_512_256/PRF_HMAC_SHA2_512/MODP_2048_256, IKE:AES_CBC_256/HMAC_SHA1_96/PRF_HMAC_SHA1/MODP_1024, IKE:AES_CBC_256/HMAC_SHA1_96/PRF_HMAC_SHA1/MODP_2048, IKE:AES_CBC_256/HMAC_SHA1_96/PRF_HMAC_SHA1/MODP_3072, IKE:AES_CBC_256/HMAC_SHA1_96/PRF_HMAC_SHA1/MODP_4096, IKE:AES_CBC_256/HMAC_SHA1_96/PRF_HMAC_SHA1/MODP_6144, IKE:AES_CBC_256/HMAC_SHA1_96/PRF_HMAC_SHA1/MODP_8192, IKE:AES_CBC_256/HMAC_SHA1_96/PRF_HMAC_SHA1/ECP_256, IKE:AES_CBC_256/HMAC_SHA1_96/PRF_HMAC_SHA1/ECP_384, IKE:AES_CBC_256/HMAC_SHA1_96/PRF_HMAC_SHA1/ECP_521, IKE:AES_CBC_256/HMAC_SHA1_96/PRF_HMAC_SHA1/MODP_1024_160, IKE:AES_CBC_256/HMAC_SHA1_96/PRF_HMAC_SHA1/MODP_2048_224, IKE:AES_CBC_256/HMAC_SHA1_96/PRF_HMAC_SHA1/MODP_2048_256, IKE:AES_CBC_256/HMAC_SHA2_256_128/PRF_HMAC_SHA2_256/MODP_1024, IKE:AES_CBC_256/HMAC_SHA2_256_128/PRF_HMAC_SHA2_256/MODP_2048, IKE:AES_CBC_256/HMAC_SHA2_256_128/PRF_HMAC_SHA2_256/MODP_3072, IKE:AES_CBC_256/HMAC_SHA2_256_128/PRF_HMAC_SHA2_256/MODP_4096, IKE:AES_CBC_256/HMAC_SHA2_256_128/PRF_HMAC_SHA2_256/MODP_6144, IKE:AES_CBC_256/HMAC_SHA2_256_128/PRF_HMAC_SHA2_256/MODP_8192, IKE:AES_CBC_256/HMAC_SHA2_256_128/PRF_HMAC_SHA2_256/ECP_256, IKE:AES_CBC_256/HMAC_SHA2_256_128/PRF_HMAC_SHA2_256/ECP_384, IKE:AES_CBC_256/HMAC_SHA2_256_128/PRF_HMAC_SHA2_256/ECP_521, IKE:AES_CBC_256/HMAC_SHA2_256_128/PRF_HMAC_SHA2_256/MODP_1024_160, IKE:AES_CBC_256/HMAC_SHA2_256_128/PRF_HMAC_SHA2_256/MODP_2048_224, IKE:AES_CBC_256/HMAC_SHA2_256_128/PRF_HMAC_SHA2_256/MODP_2048_256, IKE:AES_CBC_256/HMAC_SHA2_384_192/PRF_HMAC_SHA2_384/MODP_1024, IKE:AES_CBC_256/HMAC_SHA2_384_192/PRF_HMAC_SHA2_384/MODP_2048, IKE:AES_CBC_256/HMAC_SHA2_384_192/PRF_HMAC_SHA2_384/MODP_3072, IKE:AES_CBC_256/HMAC_SHA2_384_192/PRF_HMAC_SHA2_384/MODP_4096, IKE:AES_CBC_256/HMAC_SHA2_384_192/PRF_HMAC_SHA2_384/MODP_6144, IKE:AES_CBC_256/HMAC_SHA2_384_192/PRF_HMAC_SHA2_384/MODP_8192, IKE:AES_CBC_256/HMAC_SHA2_384_192/PRF_HMAC_SHA2_384/ECP_256, IKE:AES_CBC_256/HMAC_SHA2_384_192/PRF_HMAC_SHA2_384/ECP_384, IKE:AES_CBC_256/HMAC_SHA2_384_192/PRF_HMAC_SHA2_384/ECP_521, IKE:AES_CBC_256/HMAC_SHA2_384_192/PRF_HMAC_SHA2_384/MODP_1024_160, IKE:AES_CBC_256/HMAC_SHA2_384_192/PRF_HMAC_SHA2_384/MODP_2048_224, IKE:AES_CBC_256/HMAC_SHA2_384_192/PRF_HMAC_SHA2_384/MODP_2048_256, IKE:AES_CBC_256/HMAC_SHA2_512_256/PRF_HMAC_SHA2_512/MODP_1024, IKE:AES_CBC_256/HMAC_SHA2_512_256/PRF_HMAC_SHA2_512/MODP_2048, IKE:AES_CBC_256/HMAC_SHA2_512_256/PRF_HMAC_SHA2_512/MODP_3072, IKE:AES_CBC_256/HMAC_SHA2_512_256/PRF_HMAC_SHA2_512/MODP_4096, IKE:AES_CBC_256/HMAC_SHA2_512_256/PRF_HMAC_SHA2_512/MODP_6144, IKE:AES_CBC_256/HMAC_SHA2_512_256/PRF_HMAC_SHA2_512/MODP_8192, IKE:AES_CBC_256/HMAC_SHA2_512_256/PRF_HMAC_SHA2_512/ECP_256, IKE:AES_CBC_256/HMAC_SHA2_512_256/PRF_HMAC_SHA2_512/ECP_384, IKE:AES_CBC_256/HMAC_SHA2_512_256/PRF_HMAC_SHA2_512/ECP_521, IKE:AES_CBC_256/HMAC_SHA2_512_256/PRF_HMAC_SHA2_512/MODP_1024_160, IKE:AES_CBC_256/HMAC_SHA2_512_256/PRF_HMAC_SHA2_512/MODP_2048_224, IKE:AES_CBC_256/HMAC_SHA2_512_256/PRF_HMAC_SHA2_512/MODP_2048_256"""
    
 
    proposals_result = '\n'.join(process_proposals(proposals))
    print(f"AWS tunnel is processing proposals to find a matching configuration. AWS tunnel is configured as follows:\n\n{proposals_result}")
import subprocess
import logging
import re
from typing import Dict, Any, List, Optional


class BGPRouter:
    """BGP Router class for parsing and managing BGP route information."""
    
    def __init__(self, local_asn: str = '65412'):
        """Initialize BGP router with local ASN.
        
        Args:
            local_asn: Local BGP ASN number
        """
        self.local_asn = local_asn
        
    def _normalize_network_cidr(self, network: str) -> str:
        """Normalize network address by adding appropriate CIDR notation.
        
        Args:
            network: Network address (e.g., "172.31.0.0" or "172.16.0.1/32")
            
        Returns:
            Network address with appropriate CIDR notation
        """
        if '/' in network:
            return network
            
        try:
            octets = network.split('.')
            if len(octets) != 4:
                return network  # Invalid IP format or IPv6, return as-is

            # Determine CIDR based on trailing zero pattern

            # Check for default route
            if network == '0.0.0.0':
                return '0.0.0.0/0'

            if octets[1:] == ['0', '0', '0']:
                return f"{network}/8"

            if octets[2:] == ['0', '0']:
                return f"{network}/16"

            if octets[3] == '0':
                return f"{network}/24"
 
        except (ValueError, IndexError):
            return network
        

    def _parse_as_path(self, path_info: str) -> str:
        """Extract AS path from BGP path information.
        
        Args:
            path_info: Raw path information from BGP output
            
        Returns:
            Cleaned AS path string
        """
        path_info = path_info.strip()
        
        # Handle internal routes
        if path_info == 'i':
            return self.local_asn
            
        # Extract AS numbers using list comprehension
        path_parts = path_info.split()
        as_numbers = [part for part in path_parts if part.isdigit()]
        
        return ' '.join(as_numbers)

    def _parse_route_line(self, line: str) -> Optional[Dict[str, Any]]:
        """Parse a single BGP route line.
        
        Args:
            line: BGP route line from show command output
            
        Returns:
            Route dictionary or None if parsing fails
        """
        pattern = r'^\*>\s+(\S+)\s+(\S+)\s+(\d+)\s+(\d+)\s+(.+)$'
        match = re.match(pattern, line)
        if not match:
            return None
            
        network, next_hop, metric_str, weight_str, path_info = match.groups()
        
        try:
            return {
                "network": self._normalize_network_cidr(network),
                "nextHopIp": next_hop,
                "med": int(metric_str),
                "localPref": 100, # Always 100 for learned routes on PEs
                "weight": int(weight_str),
                "asPath": self._parse_as_path(path_info)
            }
        except ValueError as e:
            logging.warning(f"Failed to parse route line '{line}': {e}")
            return None

    def _find_route_start_index(self, lines: List[str]) -> Optional[int]:
        """Find the index where BGP routes start in the output.
        
        Args:
            lines: List of output lines
            
        Returns:
            Index of first route line or None if not found
        """
        for i, line in enumerate(lines):
            if 'Network' in line and 'Next Hop' in line:
                return i + 1
        return None

    def _get_all_bgp_routes(self) -> Dict[str, List[Dict[str, Any]]]:
        """Parse BGP route table output and return structured data.
        
        Returns:
            Dictionary containing list of BGP routes
        """
        try:
            output = """BGP table version is 0, local router ID is 169.254.112.97
Status codes: s suppressed, d damped, h history, * valid, > best, i - internal,
            r RIB-failure, S Stale, R Removed
Origin codes: i - IGP, e - EGP, ? - incomplete

Network          Next Hop            Metric LocPrf Weight Path
*> 0.0.0.0          169.254.112.98        0             0 65000 i
*> 172.16.0.1/32    169.254.112.98        0             0 65000 i
*> 172.16.0.2/32    169.254.112.98        0             0 65000 65114 49449 i
*> 172.16.0.3/32    169.254.112.98        0             0 65000 i
*> 172.16.0.4/32    169.254.112.98        0             0 65000 i
*> 172.16.0.5/32    169.254.112.98        0             0 65000 i
*> 172.16.0.112/32  169.254.112.98        0             0 65000 i
*> 172.16.0.113/32  169.254.112.98        0             0 65000 i
*> 172.16.0.114/32  169.254.112.98        0             0 65000 i
*> 172.16.0.115/32  169.254.112.98        0             0 65000 i
*> 172.16.0.116/32  169.254.112.98        0             0 65000 i
*> 172.16.0.117/32  169.254.112.98        0             0 65000 i
*> 172.16.0.118/32  169.254.112.98        0             0 65000 i
*> 172.16.0.119/32  169.254.112.98        0             0 65000 i
*> 172.16.0.120/32  169.254.112.98        0             0 65000 i
*> 172.16.0.121/32  169.254.112.98        0             0 65000 i
*> 172.31.0.0       169.254.112.97        100           32768 i
*> 172.0.0.0        169.254.112.97        100           32768 i
*> 172.1.1.0        169.254.112.97        100           32768 i
*> 172.31.0.1/32    169.254.112.97        100           32768 i
*> 172.31.0.2/32    169.254.112.97        100           32768 i
*> 172.31.0.3/32    169.254.112.97        100           32768 i
*> 172.31.0.4/32    169.254.112.97        100           32768 i
*> 2001:db8:2::/64  fe80::2               100           32768 i
*> 2001:db8:2::1/128 fe80::2              100           32768 i
*> 2001:db8:2::2/128 fe80::2              100           32768 i
*> 2001:db8:2::3/128 fe80::2              100           32768 i
*> 2001:db8:2::4/128 fe80::2              100           32768 i

Total number of prefixes 3233"""
            
            # Check if command output is valid
            if not output or not output.strip():
                logging.warning("BGP command returned empty output")
                return {"routes": []}
            
            lines = output.strip().split('\n')
            route_start_idx = self._find_route_start_index(lines)
            
            if route_start_idx is None:
                logging.warning("BGP output does not contain expected header format")
                return {"routes": []}
            
            # Parse routes using list comprehension and filter
            route_lines = [
                line.strip() for line in lines[route_start_idx:]
                if line.strip() and line.strip().startswith('*>') 
                and not line.strip().startswith('Total number')
            ]
            
            # Parse routes and convert to dictionaries
            routes = []
            for line in route_lines:
                route = self._parse_route_line(line)
                if route is not None:
                    routes.append(route)
            
            return {"routes": routes}
            
        except Exception as e:
            logging.error(f"Failed to get BGP routes: {e}")
            return {"routes": []}
    
    def get_specific_network(self, bgp_properties: Dict[str, Any], prefix: str) -> Dict[str, Any]:
        """Find specific network in BGP properties.
        
        Args:
            bgp_properties: BGP properties dictionary
            prefix: Network prefix to search for
            
        Returns:
            Route information dictionary or empty dict if not found
        """
        if not bgp_properties or not isinstance(bgp_properties, dict):
            logging.warning(f"Invalid BGP properties: {type(bgp_properties)}")
            return {}
            
        routes = bgp_properties.get("routes", [])
        logging.debug(f"Searching for prefix '{prefix}' in {len(routes)} routes")
        
        # Use next() with generator expression for efficient search
        try:
            route = next(
                route for route in routes 
                if route.get("network") == prefix
            )
            logging.debug(f"Found matching route for prefix '{prefix}': {route}")
            return route
        except StopIteration:
            logging.debug(f"No route found for prefix '{prefix}'")
            return {}


def main():
    """Main function to demonstrate BGP router functionality."""
    router = BGPRouter()
    
    # Get all BGP routes
    bgp_routes = router._get_all_bgp_routes()
    print(f"Parsed {len(bgp_routes['routes'])} BGP routes")
    print(bgp_routes)
    
    # # Display first few routes
    # for i, route in enumerate(bgp_routes['routes'][:3]):
    #     print(f"Route {i+1}: {route}")
    
    # # Search for specific prefix
    # specific_prefix = "172.16.0.1/32"
    # route_info = router.get_specific_network(bgp_routes, specific_prefix)
    
    # if route_info:
    #     print(f"Found route for {specific_prefix}: {route_info}")
    # else:
    #     print(f"No route found for {specific_prefix}")


if __name__ == "__main__":
    main()