Skip to main content
Loading...

More Python Posts

""" Calculator
----------------------------------------
"""
def addition ():
    print("Addition")
    n = float(input("Enter the number: "))
    t = 0 //Total number enter
    ans = 0
    while n != 0:
        ans = ans + n
        t+=1
        n = float(input("Enter another number (0 to calculate): "))
    return [ans,t]
def subtraction ():
    print("Subtraction");
    n = float(input("Enter the number: "))
    t = 0 //Total number enter
    sum = 0
    while n != 0:
        ans = ans - n
        t+=1
        n = float(input("Enter another number (0 to calculate): "))
    return [ans,t]
def multiplication ():
    print("Multiplication")
    n = float(input("Enter the number: "))
    t = 0 //Total number enter
    ans = 1
    while n != 0:
        ans = ans * n
        t+=1
        n = float(input("Enter another number (0 to calculate): "))
    return [ans,t]
def average():
    an = []
    an = addition()
    t = an[1]
    a = an[0]
    ans = a / t
    return [ans,t]
// main...
while True:
    list = []
    print(" My first python program!")
    print(" Simple Calculator in python by Malik Umer Farooq")
    print(" Enter 'a' for addition")
    print(" Enter 's' for substraction")
    print(" Enter 'm' for multiplication")
    print(" Enter 'v' for average")
    print(" Enter 'q' for quit")
    c = input(" ")
    if c != 'q':
        if c == 'a':
            list = addition()
            print("Ans = ", list[0], " total inputs ",list[1])
        elif c == 's':
            list = subtraction()
            print("Ans = ", list[0], " total inputs ",list[1])
        elif c == 'm':
            list = multiplication()
            print("Ans = ", list[0], " total inputs ",list[1])
        elif c == 'v':
            list = average()
            print("Ans = ", list[0], " total inputs ",list[1])
        else:
            print ("Sorry, invilid character")
    else:
        break
import subprocess
import json
import re


def parse_bgp_routes(bgp_output):
    """
    Parse BGP route table output and return structured data.
    
    Args:
        bgp_output (str): Raw BGP table output
        
    Returns:
        dict: Structured BGP routes data
    """
    routes = []
    
    # Split into lines and find the route entries
    lines = bgp_output.strip().split('\n')
    
    # Find the header line to identify where routes start
    route_start_idx = None
    for i, line in enumerate(lines):
        if 'Network' in line and 'Next Hop' in line:
            route_start_idx = i + 1
            break
    
    if route_start_idx is None:
        return {"routes": routes}
    
    # Parse each route line
    for line in lines[route_start_idx:]:
        line = line.strip()
        
        # Skip empty lines and summary lines
        if not line or line.startswith('Total number') or line.startswith('IPv6'):
            continue
            
        # Skip lines that don't start with route status indicators
        if not line.startswith('*>'):
            continue
        
        # Parse the route line using regex
        # Pattern matches: *> network next_hop metric [locprf] weight path
        # Note: LocPrf column may be empty, so we'll set it to 0 for all records
        pattern = r'^\*>\s+(\S+)\s+(\S+)\s+(\d+)\s+(\d+)\s+(.+)$'
        match = re.match(pattern, line)
        
        if match:
            network = match.group(1)
            next_hop = match.group(2)
            metric = int(match.group(3))
            loc_prf = 0  # Set to 0 for all records as requested
            weight = int(match.group(4))
            path_info = match.group(5).strip()
            
            # Extract AS path (remove origin code)
            path_parts = path_info.split()
            as_path = []
            for part in path_parts:
                if part.isdigit():
                    as_path.append(part)
            
            path = ' '.join(as_path) if as_path else ""
            
            route = {
                "network": network,
                "nextHop": next_hop,
                "metric": metric,
                "locPrf": loc_prf,
                "weight": weight,
                "path": path
            }
            routes.append(route)
    
    return {"routes": routes}


def get_bgp_routes_json():
    """
    Get BGP routes from sample data and return as JSON.
    
    Returns:
        str: JSON string of BGP routes
    """
    output_text = """IPv4
BGP table version is 0, local router ID is 169.254.0.185
Status codes: s suppressed, d damped, h history, * valid, > best, i - internal,
            r RIB-failure, S Stale, R Removed
Origin codes: i - IGP, e - EGP, ? - incomplete

Network          Next Hop            Metric LocPrf Weight Path
*> 10.0.0.0         169.254.0.186          100             0 65100 ?
*> 10.2.0.0/16      169.254.0.185          100         32768 i
*> 10.5.0.0/16      169.254.0.185          100         32768 i
*> 10.6.0.0/16      169.254.0.185          100         32768 i
*> 10.10.0.0/16     169.254.0.185          100         32768 i
*> 10.42.0.0/16     169.254.0.185          100         32768 i
*> 10.56.0.0/16     169.254.0.185          100         32768 i
*> 10.133.0.0/21    169.254.0.185          100         32768 i
*> 10.192.2.0/23    169.254.0.186          100             0 65100 ?
*> 10.192.6.0/23    169.254.0.186          100             0 65100 ?
*> 10.208.0.0/18    169.254.0.185          100         32768 i
*> 10.210.0.0/20    169.254.0.186          100             0 65100 ?
*> 10.210.64.0/18   169.254.0.186          100             0 65100 ?
*> 10.210.128.0/20  169.254.0.186          100             0 65100 ?
*> 10.211.0.0/17    169.254.0.186          100             0 65100 ?
*> 10.211.128.0/17  169.254.0.186          100             0 65100 ?
*> 10.216.0.0/16    169.254.0.186          100             0 65100 ?
*> 10.224.64.0/19   169.254.0.185          100         32768 i
*> 10.227.128.0/18  169.254.0.185          100         32768 i
*> 10.227.192.0/18  169.254.0.185          100         32768 i
*> 10.228.64.0/18   169.254.0.185          100         32768 i
*> 10.228.128.0/18  169.254.0.185          100         32768 i
*> 10.228.192.0/18  169.254.0.185          100         32768 i
*> 10.229.64.0/18   169.254.0.185          100         32768 i
*> 10.229.128.0/18  169.254.0.185          100         32768 i
*> 10.229.192.0/18  169.254.0.185          100         32768 i
*> 10.230.0.0/18    169.254.0.185          100         32768 i
*> 10.230.64.0/18   169.254.0.185          100         32768 i
*> 10.230.128.0/18  169.254.0.185          100         32768 i
*> 10.230.192.0/18  169.254.0.185          100         32768 i
*> 10.246.48.0/20   169.254.0.185          100         32768 i
*> 10.254.192.0/18  169.254.0.185          100         32768 i
*> 10.255.0.0/18    169.254.0.185          100         32768 i
*> 10.255.64.0/18   169.254.0.185          100         32768 i
*> 10.255.128.0/18  169.254.0.185          100         32768 i
*> 10.255.192.0/19  169.254.0.185          100         32768 i
*> 10.255.224.0/19  169.254.0.185          100         32768 i
*> 100.64.0.64/27   169.254.0.185          100         32768 i
*> 100.64.0.96/27   169.254.0.185          100         32768 i
*> 100.64.0.128/27  169.254.0.185          100         32768 i
*> 100.64.0.160/27  169.254.0.185          100         32768 i
*> 172.16.0.0/12    169.254.0.186          100             0 65100 69999 21222 ?
*> 240.0.0.0/4      169.254.0.186          100             0 65100 69999 21222 ?
*> 253.128.0.0/14   169.254.0.186          100             0 65100 ?
*> 253.132.0.0/20   169.254.0.186          100             0 65100 ?

Total number of prefixes 45

IPv6
No BGP network exists"""
    
    # Parse the BGP output and return as JSON
    parsed_data = parse_bgp_routes(output_text)
    return json.dumps(parsed_data, indent=2)

def get_specific_network(prefix):
    # Get all BGP routes first
    all_routes = json.loads(get_bgp_routes_json())
    
    # Search through routes for matching prefix
    for route in all_routes["routes"]:
        if route["network"] == prefix:
            return route
            
    # Return None if no matching prefix is found
    return None

def main():
    """Main function to demonstrate the BGP parser."""
    print(get_bgp_routes_json())
    print(get_specific_network("10.42.0.0/16"))


if __name__ == "__main__":
    main()
class ProposalParser:
    """A class to parse IKE and ESP proposal strings into human-readable formats.

    This class supports parsing of IKE and ESP proposals, extracting encryption, hash, PRF (for IKE),
    and Diffie-Hellman (DH) group information. It also handles the concatenation of these components
    into a structured format, indicating whether Perfect Forward Secrecy (PFS) is enabled for ESP proposals.
    The parser uses predefined mappings for DH groups, encryption algorithms, hash functions, and Pseudo-Random Functions (PRFs).
    It can process a list of proposals and return a formatted string summarizing the cryptographic parameters.
    Attributes:

        dh_mapping (dict): A mapping of Diffie-Hellman groups to their corresponding identifiers

        enc_mapping (dict): A mapping of encryption algorithms to their corresponding identifiers

        hash_mapping (dict): A mapping of hash functions to their corresponding identifiers

        prf_mapping (dict): A mapping of Pseudo-Random Functions to their corresponding identifiers

    Methods:
        parse_ike_proposal(proposal): Parses a single IKE or ESP proposal string into a structured dictionary with encryption, hash, PRF, and DH group information.

        process_proposals(proposal_list): Processes a comma-separated list of IKE or ESP proposals, concatenating encryption, hash, PRF (for IKE), and DH group values, and indicating whether PFS is enabled for ESP proposals.

    """
    
    def __init__(self):
        """Initialize the parser with mappings for DH groups, encryption, hash, and PRF."""
        self.dh_mapping = {
            'MODP_768': '1',
            'MODP_1024': '2',
            'MODP_1536': '5',
            'MODP_2048': '14',
            'MODP_3072': '15',
            'MODP_4096': '16',
            'MODP_6144': '17',
            'MODP_8192': '18',
            'ECP_256': '19',
            'ECP_384': '20',
            'ECP_521': '21',
            'ECP_192': '25',
            'ECP_224': '26',
            'MODP_1024_160': '22',
            'MODP_2048_224': '23',
            'MODP_2048_256': '24',
            'FFDHE_2048': '256',
            'FFDHE_3072': '257',
            'FFDHE_4096': '258',
            'FFDHE_6144': '259',
            'FFDHE_8192': '260',
            'ECP_224_BP': '27',
            'ECP_256_BP': '28',
            'ECP_384_BP': '29',
            'ECP_512_BP': '30',
            'CURVE_25519': '31',
            'CURVE_448': '32',
        }
        
        self.enc_mapping = {
            'AES_CBC_128': 'AES128',
            'AES_CBC_192': 'AES192',
            'AES_CBC_256': 'AES256',
            'AES_GCM_16_128': 'AES128-GCM-16',
            'AES_GCM_16_192': 'AES192-GCM-16',
            'AES_GCM_16_256': 'AES256-GCM-16',
            'AES_GCM_8_128': 'AES128-GCM-8',
            'AES_GCM_8_256': 'AES256-GCM-8',
            'AES_GCM_12_128': 'AES128-GCM-12',
            'AES_GCM_12_256': 'AES256-GCM-12',
            'AES_CCM_16_128': 'AES128-CCM-16',
            'AES_CCM_16_256': 'AES256-CCM-16',
            'AES_CTR_128': 'AES128-CTR',
            'AES_CTR_192': 'AES192-CTR',
            'AES_CTR_256': 'AES256-CTR',
            '3DES_CBC': '3DES',
            'DES_CBC': 'DES',
            'CAMELLIA_CBC_128': 'CAMELLIA128',
            'CAMELLIA_CBC_256': 'CAMELLIA256',
            'CHACHA20_POLY1305': 'CHACHA20-POLY1305',
            'BLOWFISH_CBC': 'BLOWFISH',
            'CAST5_CBC': 'CAST5'
        }
        
        self.hash_mapping = {
            'HMAC_MD5': 'MD5',
            'HMAC_MD5_96': 'MD5',
            'HMAC_SHA1': 'SHA1',
            'HMAC_SHA1_96': 'SHA1',
            'HMAC_SHA2_256': 'SHA2-256',
            'HMAC_SHA2_256_128': 'SHA2-256',
            'HMAC_SHA2_384': 'SHA2-384',
            'HMAC_SHA2_384_192': 'SHA2-384',
            'HMAC_SHA2_512': 'SHA2-512',
            'HMAC_SHA2_512_256': 'SHA2-512',
            'HMAC_SHA3_224': 'SHA3-224',
            'HMAC_SHA3_256': 'SHA3-256',
            'HMAC_SHA3_384': 'SHA3-384',
            'HMAC_SHA3_512': 'SHA3-512',
            'AES_GMAC_128': 'GMAC-128',
            'AES_GMAC_192': 'GMAC-192',
            'AES_GMAC_256': 'GMAC-256',
            'POLY1305': 'POLY1305'
        }
        
        self.prf_mapping = {
            'PRF_HMAC_MD5': 'MD5',
            'PRF_HMAC_SHA1': 'SHA1',
            'PRF_HMAC_SHA2_256': 'SHA2-256',
            'PRF_HMAC_SHA2_384': 'SHA2-384',
            'PRF_HMAC_SHA2_512': 'SHA2-512',
            'PRF_AES128_CMAC': 'AES128-CMAC',
            'PRF_AES128_XCBC': 'AES128-XCBC',
            'PRF_HMAC_SHA3_224': 'SHA3-224',
            'PRF_HMAC_SHA3_256': 'SHA3-256',
            'PRF_HMAC_SHA3_384': 'SHA3-384',
            'PRF_HMAC_SHA3_512': 'SHA3-512'
        }

    def parse_ike_proposal(self, proposal):
        """
        Parse an IKE or ESP proposal string into a structured format.

        Args:
            proposal (str): The proposal string, e.g., "IKE:AES_CBC_256/HMAC_SHA2_256/PRF_HMAC_SHA2_256/MODP_2048"
            
        Returns:
            dict: A dictionary with keys 'encryption', 'hash', 'prf', and 'dh_group'
        """

        # Split the proposal into components based on '/'
        components = proposal.split('/')
        
        result = {
            'encryption': [],
            'hash': [],
            'prf': [],
            'dh_group': []
        }
        
        
        is_ike = proposal.startswith('IKE:')
        is_esp = proposal.startswith('ESP:')
        

        # Remove IKE or ESP prefix if present for easier parsing later
        if is_ike or is_esp:
            components[0] = components[0].replace('IKE:', '').replace('ESP:', '')
        

        
        # Determine the current section based on the first component
        # Determine the current section based on the first component
        enc_components = []
        hash_components = []
        prf_components = []
        dh_components = []
        unknown_components = []  # To track unrecognized components

        for component in components:
            categorized = False

            # Encryption components
            if (component in self.enc_mapping or 
                any(s in component for s in ['AES_CBC', 'AES_GCM', 'AES_CTR', 'CHACHA20', 
                                            'BLOWFISH', 'CAST5', 'DES', '3DES', 'CAMELLIA'])):
                enc_components.append(component)
                categorized = True

            # Hash components
            if (component in self.hash_mapping or 
                any(s in component for s in [ 'HMAC_MD5', 'POLY1305', 'AES_GMAC'])):
                hash_components.append(component)
                categorized = True
            else:
                hash_components.append("None")

            # PRF components (only if is_ike is True)
            if is_ike and 'PRF_' in component:
                prf_components.append(component)
                categorized = True

            # Diffie-Hellman components
            if (component in self.dh_mapping or 
                any(s in component for s in ['MODP', 'ECP', 'FFDHE', 'CURVE'])):
                dh_components.append(component)
                categorized = True

            # Skip irrelevant components
            if component == 'NO_EXT_SEQ':
                continue

            # Log unrecognized components
            if not categorized:
                unknown_components.append(component)

        # Optional: Log or handle unknown components
        if unknown_components:
            print(f"Warning: Unrecognized components: {unknown_components}")
        

        # Map encryption components
        for enc in enc_components:
            mapped_enc = self.enc_mapping.get(enc, 'Unknown')
            if mapped_enc != 'Unknown' and mapped_enc not in result['encryption']:
                result['encryption'].append(mapped_enc)
        
        # Map hash components (skip for AEAD ciphers like AES-GCM)
        #if not any(enc.startswith('AES_GCM') or enc.startswith('AES_CCM') or enc == 'CHACHA20_POLY1305' for enc in enc_components):
        for hash_val in hash_components:
            print(hash_components)
            mapped_hash = self.hash_mapping.get(hash_val, 'Unknown')
            if mapped_hash != 'Unknown' and mapped_hash not in result['hash']:
                result['hash'].append(mapped_hash)
            if mapped_hash == 'Unknown':
                result['hash'].append(mapped_hash)

        
        # Map PRF components
        for prf in prf_components:
            mapped_prf = self.prf_mapping.get(prf, 'Unknown')
            if mapped_prf == "Unknown":
                result['prf'].append(mapped_prf)
            if mapped_prf != 'Unknown' and mapped_prf not in result['prf']:
                result['prf'].append(mapped_prf)


        # Map DH group components
        for dh in dh_components:
            mapped_dh = self.dh_mapping.get(dh)
            if mapped_dh != 'None' and mapped_dh not in result['dh_group']:
                result['dh_group'].append(mapped_dh)

        
        # Handle ESP case (no PRF for ESP proposals)
        if is_esp:
            result['prf'] = ['None']
        
        if not result['encryption']:
            result['encryption'] = ['Unknown']

        # if not result['hash']:
        #     result['hash'] = ['Unknown']
        
        print(result['hash'])

        return result

    def process_proposals(self, proposal_list):
        """
        Process a list of IKE or ESP proposals, concatenating encryption, hash, PRF (for IKE only), 
        and DH group values, and indicate whether PFS is enabled for ESP proposals only.
        
        Args:
            proposal_list (str): Comma-separated string of IKE or ESP proposals
        
        Returns:
            str: Formatted string with concatenated encryption, hash, PRF (for IKE), DH groups, and PFS status (for ESP)
        """
        proposal_list = proposal_list.replace(',', ', ')
        proposals = proposal_list.strip().split(', ')

        
        # Collect unique encryption, hash, PRF, and DH groups
        enc_set = set()
        hash_set = set()
        prf_set = set()
        dh_set = set()
        


        # Parse each proposal and update the sets for later sorting and formatting
        for proposal in proposals:
            parsed = self.parse_ike_proposal(proposal.strip())
            print(parsed)
            enc_set.update(parsed['encryption'])
            if parsed['hash'] != ['None']:
                hash_set.update(parsed['hash'])
            else:
                hash_set.update(parsed['hash'])
            if parsed['prf'] != ['None']:
                prf_set.update(parsed['prf'])
            if parsed['dh_group'] != ['None']:
                dh_set.update(parsed['dh_group'])

        
        # Convert sets to sorted lists
        enc_list = sorted(list(enc_set))
        hash_list = sorted(list(hash_set))
        prf_list = sorted(list(prf_set))
        dh_list = sorted(list(dh_set), key=lambda x: int(x))

        
        # Determine PFS status for ESP proposals only
        is_ike = any(proposal.startswith('IKE:') for proposal in proposals)
        pfs_status = "PFS: Enabled" if dh_set and not is_ike else "PFS: None"

        
        # Format output as a single concatenated string
        enc_part = f"Encryption: {', '.join(enc_list)}" if enc_list else "Encryption: None"
        hash_part = f"Hash: {', '.join(hash_list)}"
        dh_part = f"DH Group(s): {', '.join(dh_list)}" if dh_list else "DH Group(s): None"
        prf_part = f"PRF: {', '.join(prf_list)}" if prf_list else "PRF: None"

        
        # Return formatted string based on whether it's an IKE or ESP proposal
        if is_ike:
            return f"{enc_part} {hash_part} {prf_part} {dh_part}"
        else:
            return f"{enc_part} {hash_part} {dh_part} {pfs_status}"
            
# Example usage
if __name__ == "__main__":
    parser = ProposalParser()

    unknown_hash = "IKE:AES_CBC_256/INVALID_HASH/PRF_HMAC_SHA2_256/MODP_2048"
    none_hash = "IKE:AES_CBC_256/PRF_HMAC_SHA2_256/MODP_2048"

    # Outputs Encryption: AES256 Hash: Unknown PRF: SHA2-256 DH Group(s): 14 <-- Correct!
    print(parser.process_proposals(unknown_hash))

    # Outputs Encryption: AES256 Hash: Unknown PRF: SHA2-256 DH Group(s): 14 <-- Incorrect
    print(parser.process_proposals(none_hash))