Skip to main content

Create a Floyd’s Triangle

May 31, 2023CodeCatch
Loading...

More Python Posts

Copy file to destination

Nov 18, 2022AustinLeath

0 likes • 1 view

# importing the modules
import os
import shutil
# getting the current working directory
src_dir = os.getcwd()
# printing current directory
print(src_dir)
# copying the files
shutil.copyfile('test.txt', 'test.txt.copy2') #copy src to dst
# printing the list of new files
print(os.listdir())

Lonely Integer

Feb 26, 2023wabdelh

0 likes • 0 views

#84 48 13 20 61 20 33 97 34 45 6 63 71 66 24 57 92 74 6 25 51 86 48 15 64 55 77 30 56 53 37 99 9 59 57 61 30 97 50 63 59 62 39 32 34 4 96 51 8 86 10 62 16 55 81 88 71 25 27 78 79 88 92 50 16 8 67 82 67 37 84 3 33 4 78 98 39 64 98 94 24 82 45 3 53 74 96 9 10 94 13 79 15 27 56 66 32 81 77
# xor a list of integers to find the lonely integer
res = a[0]
for i in range(1,len(a)):
res = res ^ a[i]

bruteforce password cracker

Nov 18, 2022AustinLeath

0 likes • 3 views

import itertools
import string
import time
def guess_password(real):
chars = string.ascii_lowercase + string.ascii_uppercase + string.digits + string.punctuation
attempts = 0
for password_length in range(1, 9):
for guess in itertools.product(chars, repeat=password_length):
startTime = time.time()
attempts += 1
guess = ''.join(guess)
if guess == real:
return 'password is {}. found in {} guesses.'.format(guess, attempts)
loopTime = (time.time() - startTime);
print(guess, attempts, loopTime)
print("\nIt will take A REALLY LONG TIME to crack a long password. Try this out with a 3 or 4 letter password and see how this program works.\n")
val = input("Enter a password you want to crack that is 9 characters or below: ")
print(guess_password(val.lower()))

Fibonacci Series

Nov 18, 2022AustinLeath

0 likes • 8 views

#Python 3: Fibonacci series up to n
def fib(n):
a, b = 0, 1
while a < n:
print(a, end=' ')
a, b = b, a+b
print()
fib(1000)

Radix sort

Nov 19, 2022CodeCatch

0 likes • 1 view

# Python program for implementation of Radix Sort
# A function to do counting sort of arr[] according to
# the digit represented by exp.
def countingSort(arr, exp1):
n = len(arr)
# The output array elements that will have sorted arr
output = [0] * (n)
# initialize count array as 0
count = [0] * (10)
# Store count of occurrences in count[]
for i in range(0, n):
index = (arr[i]/exp1)
count[int((index)%10)] += 1
# Change count[i] so that count[i] now contains actual
# position of this digit in output array
for i in range(1,10):
count[i] += count[i-1]
# Build the output array
i = n-1
while i>=0:
index = (arr[i]/exp1)
output[ count[ int((index)%10) ] - 1] = arr[i]
count[int((index)%10)] -= 1
i -= 1
# Copying the output array to arr[],
# so that arr now contains sorted numbers
i = 0
for i in range(0,len(arr)):
arr[i] = output[i]
# Method to do Radix Sort
def radixSort(arr):
# Find the maximum number to know number of digits
max1 = max(arr)
# Do counting sort for every digit. Note that instead
# of passing digit number, exp is passed. exp is 10^i
# where i is current digit number
exp = 1
while max1/exp > 0:
countingSort(arr,exp)
exp *= 10
# Driver code to test above
arr = [ 170, 45, 75, 90, 802, 24, 2, 66]
radixSort(arr)
for i in range(len(arr)):
print(arr[i]),

Binary search algorithm

Nov 19, 2022CodeCatch

0 likes • 4 views

""" Binary Search Algorithm
----------------------------------------
"""
#iterative implementation of binary search in Python
def binary_search(a_list, item):
"""Performs iterative binary search to find the position of an integer in a given, sorted, list.
a_list -- sorted list of integers
item -- integer you are searching for the position of
"""
first = 0
last = len(a_list) - 1
while first <= last:
i = (first + last) / 2
if a_list[i] == item:
return ' found at position '.format(item=item, i=i)
elif a_list[i] > item:
last = i - 1
elif a_list[i] < item:
first = i + 1
else:
return ' not found in the list'.format(item=item)
#recursive implementation of binary search in Python
def binary_search_recursive(a_list, item):
"""Performs recursive binary search of an integer in a given, sorted, list.
a_list -- sorted list of integers
item -- integer you are searching for the position of
"""
first = 0
last = len(a_list) - 1
if len(a_list) == 0:
return ' was not found in the list'.format(item=item)
else:
i = (first + last) // 2
if item == a_list[i]:
return ' found'.format(item=item)
else:
if a_list[i] < item:
return binary_search_recursive(a_list[i+1:], item)
else:
return binary_search_recursive(a_list[:i], item)