• Nov 19, 2022 •CodeCatch
0 likes • 2 views
# Python program for implementation of Radix Sort # A function to do counting sort of arr[] according to # the digit represented by exp. def countingSort(arr, exp1): n = len(arr) # The output array elements that will have sorted arr output = [0] * (n) # initialize count array as 0 count = [0] * (10) # Store count of occurrences in count[] for i in range(0, n): index = (arr[i]/exp1) count[int((index)%10)] += 1 # Change count[i] so that count[i] now contains actual # position of this digit in output array for i in range(1,10): count[i] += count[i-1] # Build the output array i = n-1 while i>=0: index = (arr[i]/exp1) output[ count[ int((index)%10) ] - 1] = arr[i] count[int((index)%10)] -= 1 i -= 1 # Copying the output array to arr[], # so that arr now contains sorted numbers i = 0 for i in range(0,len(arr)): arr[i] = output[i] # Method to do Radix Sort def radixSort(arr): # Find the maximum number to know number of digits max1 = max(arr) # Do counting sort for every digit. Note that instead # of passing digit number, exp is passed. exp is 10^i # where i is current digit number exp = 1 while max1/exp > 0: countingSort(arr,exp) exp *= 10 # Driver code to test above arr = [ 170, 45, 75, 90, 802, 24, 2, 66] radixSort(arr) for i in range(len(arr)): print(arr[i]),
• Oct 4, 2023 •AustinLeath
0 likes • 10 views
weigh = lambda a,b: sum(b)-sum(a) FindCoin = lambda A: 0 if (n := len(A)) == 1 else (m := n//3) * (w := 1 + weigh(A[:m], A[2*m:])) + FindCoin(A[m*w:m*(w+1)]) print(FindCoin([1,1,1,1,1,1,1,2,1]))
• Nov 18, 2022 •AustinLeath
0 likes • 9 views
#Python 3: Fibonacci series up to n def fib(n): a, b = 0, 1 while a < n: print(a, end=' ') a, b = b, a+b print() fib(1000)
0 likes • 6 views
from collections import Counter def find_parity_outliers(nums): return [ x for x in nums if x % 2 != Counter([n % 2 for n in nums]).most_common()[0][0] ] find_parity_outliers([1, 2, 3, 4, 6]) # [1, 3]
• Apr 15, 2021 •NoahEaton
import anytree as at import random as rm # Generate a tree with node_count many nodes. Each has a number key that shows when it was made and a randomly selected color, red or white. def random_tree(node_count): # Generates the list of nodes nodes = [] for i in range(node_count): test = rm.randint(1,2) if test == 1: nodes.append(at.Node(str(i),color="white")) else: nodes.append(at.Node(str(i),color="red")) #Creates the various main branches for i in range(node_count): for j in range(i, len(nodes)): test = rm.randint(1,len(nodes)) if test == 1 and nodes[j].parent == None and (not nodes[i] == nodes[j]): nodes[j].parent = nodes[i] #Collects all the main branches into a single tree with the first node being the root for i in range(1, node_count): if nodes[i].parent == None and (not nodes[i] == nodes[0]): nodes[i].parent = nodes[0] return nodes[0]
• Sep 9, 2023 •AustinLeath
0 likes • 25 views
print("test")