Skip to main content

print indices

Nov 18, 2022AustinLeath
Loading...

More Python Posts

Topological sort

Nov 19, 2022CodeCatch

0 likes • 3 views

#Python program to print topological sorting of a DAG
from collections import defaultdict
#Class to represent a graph
class Graph:
def __init__(self,vertices):
self.graph = defaultdict(list) #dictionary containing adjacency List
self.V = vertices #No. of vertices
# function to add an edge to graph
def addEdge(self,u,v):
self.graph[u].append(v)
# A recursive function used by topologicalSort
def topologicalSortUtil(self,v,visited,stack):
# Mark the current node as visited.
visited[v] = True
# Recur for all the vertices adjacent to this vertex
for i in self.graph[v]:
if visited[i] == False:
self.topologicalSortUtil(i,visited,stack)
# Push current vertex to stack which stores result
stack.insert(0,v)
# The function to do Topological Sort. It uses recursive
# topologicalSortUtil()
def topologicalSort(self):
# Mark all the vertices as not visited
visited = [False]*self.V
stack =[]
# Call the recursive helper function to store Topological
# Sort starting from all vertices one by one
for i in range(self.V):
if visited[i] == False:
self.topologicalSortUtil(i,visited,stack)
# Print contents of stack
print(stack)
g= Graph(6)
g.addEdge(5, 2);
g.addEdge(5, 0);
g.addEdge(4, 0);
g.addEdge(4, 1);
g.addEdge(2, 3);
g.addEdge(3, 1);
print("Following is a Topological Sort of the given graph")
g.topologicalSort()

Untitled

Sep 14, 2024rgannedo-6205

0 likes • 4 views

# Python binary search function
def binary_search(arr, target):
left = 0
right = len(arr) - 1
while left <= right:
mid = (left + right) // 2
if arr[mid] == target:
return mid
elif arr[mid] < target:
left = mid + 1
else:
right = mid - 1
return -1
# Usage
arr = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
target = 7
result = binary_search(arr, target)
if result != -1:
print(f"Element is present at index {result}")
else:
print("Element is not present in array")

clamp number

Nov 19, 2022CodeCatch

0 likes • 3 views

def clamp_number(num, a, b):
return max(min(num, max(a, b)), min(a, b))
clamp_number(2, 3, 5) # 3
clamp_number(1, -1, -5) # -1

Using logic with sets

Nov 18, 2022AustinLeath

0 likes • 1 view

#Sets
U = {0,1,2,3,4,5,6,7,8,9}
P = {1,2,3,4}
Q = {4,5,6}
R = {3,4,6,8,9}
def set2bits(xs,us) :
bs=[]
for x in us :
if x in xs :
bs.append(1)
else:
bs.append(0)
assert len(us) == len(bs)
return bs
def union(set1,set2) :
finalSet = set()
bitList1 = set2bits(set1, U)
bitList2 = set2bits(set2, U)
for i in range(len(U)) :
if(bitList1[i] or bitList2[i]) :
finalSet.add(i)
return finalSet
def intersection(set1,set2) :
finalSet = set()
bitList1 = set2bits(set1, U)
bitList2 = set2bits(set2, U)
for i in range(len(U)) :
if(bitList1[i] and bitList2[i]) :
finalSet.add(i)
return finalSet
def compliment(set1) :
finalSet = set()
bitList = set2bits(set1, U)
for i in range(len(U)) :
if(not bitList[i]) :
finalSet.add(i)
return finalSet
def implication(a,b):
return union(compliment(a), b)
###########################################################################################
###################### Problems 1-6 #######################################
###########################################################################################
#p \/ (q /\ r) = (p \/ q) /\ (p \/ r)
def prob1():
return union(P, intersection(Q,R)) == intersection(union(P,Q), union(P,R))
#p /\ (q \/ r) = (p /\ q) \/ (p /\ r)
def prob2():
return intersection(P, union(Q,R)) == union(intersection(P,Q), intersection(P,R))
#~(p /\ q) = ~p \/ ~q
def prob3():
return compliment(intersection(P,R)) == union(compliment(P), compliment(R))
#~(p \/ q) = ~p /\ ~q
def prob4():
return compliment(union(P,Q)) == intersection(compliment(P), compliment(Q))
#(p=>q) = (~q => ~p)
def prob5():
return implication(P,Q) == implication(compliment(Q), compliment(P))
#(p => q) /\ (q => r) => (p => r)
def prob6():
return implication(intersection(implication(P,Q), implication(Q,R)), implication(P,R))
print("Problem 1: ", prob1())
print("Problem 2: ", prob2())
print("Problem 3: ", prob3())
print("Problem 4: ", prob4())
print("Problem 5: ", prob5())
print("Problem 6: ", prob6())
'''
Problem 1: True
Problem 2: True
Problem 3: True
Problem 4: True
Problem 5: True
Problem 6: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
'''

screencap.py

Jan 23, 2021asnark

0 likes • 0 views

"""
Take screenshots at x interval - make a movie of doings on a computer.
"""
import time
from datetime import datetime
import ffmpeg
import pyautogui
while True:
epoch_time = int(time.time())
today = datetime.now().strftime("%Y_%m_%d")
filename = str(epoch_time) + ".png"
print("taking screenshot: {0}".format(filename))
myScreenshot = pyautogui.screenshot()
myScreenshot.save(today + "/" + filename)
time.sleep(5)
#
# and then tie it together with: https://github.com/kkroening/ffmpeg-python/blob/master/examples/README.md#assemble-video-from-sequence-of-frames
#
"""
import ffmpeg
(
ffmpeg
.input('./2021_01_22/*.png', pattern_type='glob', framerate=25)
.filter('deflicker', mode='pm', size=10)
.filter('scale', size='hd1080', force_original_aspect_ratio='increase')
.output('movie.mp4', crf=20, preset='slower', movflags='faststart', pix_fmt='yuv420p')
.run()
)
"""

print colored text to IDE terminal

Jun 1, 2023CodeCatch

0 likes • 2 views

from colorama import init, Fore
# Initialize colorama
init()
print(Fore.RED + "This text is in red color.")
print(Fore.GREEN + "This text is in green color.")
print(Fore.BLUE + "This text is in blue color.")
# Reset colorama
print(Fore.RESET + "This text is back to the default color.")