Skip to main content

Rock paper scissors

Nov 19, 2022CodeCatch
Loading...

More Python Posts

Number guessing game

Nov 19, 2022CodeCatch

0 likes • 0 views

""" Number Guessing Game
----------------------------------------
"""
import random
attempts_list = []
def show_score():
if len(attempts_list) <= 0:
print("There is currently no high score, it's yours for the taking!")
else:
print("The current high score is {} attempts".format(min(attempts_list)))
def start_game():
random_number = int(random.randint(1, 10))
print("Hello traveler! Welcome to the game of guesses!")
player_name = input("What is your name? ")
wanna_play = input("Hi, {}, would you like to play the guessing game? (Enter Yes/No) ".format(player_name))
// Where the show_score function USED to be
attempts = 0
show_score()
while wanna_play.lower() == "yes":
try:
guess = input("Pick a number between 1 and 10 ")
if int(guess) < 1 or int(guess) > 10:
raise ValueError("Please guess a number within the given range")
if int(guess) == random_number:
print("Nice! You got it!")
attempts += 1
attempts_list.append(attempts)
print("It took you {} attempts".format(attempts))
play_again = input("Would you like to play again? (Enter Yes/No) ")
attempts = 0
show_score()
random_number = int(random.randint(1, 10))
if play_again.lower() == "no":
print("That's cool, have a good one!")
break
elif int(guess) > random_number:
print("It's lower")
attempts += 1
elif int(guess) < random_number:
print("It's higher")
attempts += 1
except ValueError as err:
print("Oh no!, that is not a valid value. Try again...")
print("({})".format(err))
else:
print("That's cool, have a good one!")
if __name__ == '__main__':
start_game()

Find URL in string

Nov 19, 2022CodeCatch

0 likes • 0 views

# Python code to find the URL from an input string
# Using the regular expression
import re
def Find(string):
# findall() has been used
# with valid conditions for urls in string
regex = r"(?i)\b((?:https?://|www\d{0,3}[.]|[a-z0-9.\-]+[.][a-z]{2,4}/)(?:[^\s()<>]+|\(([^\s()<>]+|(\([^\s()<>]+\)))*\))+(?:\(([^\s()<>]+|(\([^\s()<>]+\)))*\)|[^\s`!()\[\]{};:'\".,<>?«»“”‘’]))"
url = re.findall(regex,string)
return [x[0] for x in url]
# Driver Code
string = 'My Profile: https://codecatch.net'
print("Urls: ", Find(string))

Bitonic sort

Nov 19, 2022CodeCatch

0 likes • 0 views

# Python program for Bitonic Sort. Note that this program
# works only when size of input is a power of 2.
# The parameter dir indicates the sorting direction, ASCENDING
# or DESCENDING; if (a[i] > a[j]) agrees with the direction,
# then a[i] and a[j] are interchanged.*/
def compAndSwap(a, i, j, dire):
if (dire==1 and a[i] > a[j]) or (dire==0 and a[i] > a[j]):
a[i],a[j] = a[j],a[i]
# It recursively sorts a bitonic sequence in ascending order,
# if dir = 1, and in descending order otherwise (means dir=0).
# The sequence to be sorted starts at index position low,
# the parameter cnt is the number of elements to be sorted.
def bitonicMerge(a, low, cnt, dire):
if cnt > 1:
k = cnt/2
for i in range(low , low+k):
compAndSwap(a, i, i+k, dire)
bitonicMerge(a, low, k, dire)
bitonicMerge(a, low+k, k, dire)
# This funcion first produces a bitonic sequence by recursively
# sorting its two halves in opposite sorting orders, and then
# calls bitonicMerge to make them in the same order
def bitonicSort(a, low, cnt,dire):
if cnt > 1:
k = cnt/2
bitonicSort(a, low, k, 1)
bitonicSort(a, low+k, k, 0)
bitonicMerge(a, low, cnt, dire)
# Caller of bitonicSort for sorting the entire array of length N
# in ASCENDING order
def sort(a,N, up):
bitonicSort(a,0, N, up)
# Driver code to test above
a = [3, 7, 4, 8, 6, 2, 1, 5]
n = len(a)
up = 1
sort(a, n, up)
print ("\n\nSorted array is")
for i in range(n):
print("%d" %a[i]),

Untitled

Apr 21, 2023sebastianagauyao2002-61a8

0 likes • 0 views

print("hellur")

Reverse a linked list

Nov 19, 2022CodeCatch

0 likes • 0 views

# Python program to reverse a linked list
# Time Complexity : O(n)
# Space Complexity : O(n) as 'next'
#variable is getting created in each loop.
# Node class
class Node:
# Constructor to initialize the node object
def __init__(self, data):
self.data = data
self.next = None
class LinkedList:
# Function to initialize head
def __init__(self):
self.head = None
# Function to reverse the linked list
def reverse(self):
prev = None
current = self.head
while(current is not None):
next = current.next
current.next = prev
prev = current
current = next
self.head = prev
# Function to insert a new node at the beginning
def push(self, new_data):
new_node = Node(new_data)
new_node.next = self.head
self.head = new_node
# Utility function to print the linked LinkedList
def printList(self):
temp = self.head
while(temp):
print temp.data,
temp = temp.next
# Driver program to test above functions
llist = LinkedList()
llist.push(20)
llist.push(4)
llist.push(15)
llist.push(85)
print "Given Linked List"
llist.printList()
llist.reverse()
print "\nReversed Linked List"
llist.printList()

Compute all the Permutation of a String

May 31, 2023CodeCatch

0 likes • 2 views

import itertools
def compute_permutations(string):
# Generate all permutations of the string
permutations = itertools.permutations(string)
# Convert each permutation tuple to a string
permutations = [''.join(permutation) for permutation in permutations]
return permutations
# Prompt the user for a string
string = input("Enter a string: ")
# Compute permutations
permutations = compute_permutations(string)
# Display the permutations
print("Permutations:")
for permutation in permutations:
print(permutation)