Skip to main content

Topological sort

Nov 19, 2022CodeCatch
Loading...

More Python Posts

UNT CSCE 2100 Assignment 6

Nov 18, 2022AustinLeath

0 likes • 0 views

"""
Assignment 6
The goal is to make a graph of
who bit who and who was bitten.
There should be 10 nodes and 15 edges.
3 arrows of biting each other and
3 arrows of someone biting themselves.
Networkx can not do self biting
arrows, but it is in the code.
"""
from graphviz import Digraph as DDotGraph
from graphviz import Graph as UDotGraph
import networkx as nx
from networkx.algorithms.dag import transitive_closure
import graphviz as gv
import matplotlib.pyplot as plt
import numpy as np
from numpy.linalg import matrix_power
"""
class DGraph:
def __init__(self):
self.d = dict()
def clear(self):
self.d = dict()
def add_node(self,n):
if not self.d.get(n):
self.d[n] = set()
def add_edge(self,e):
f,t=e
self.add_node(f)
self.add_node(t)
vs=self.d.get(f)
if not vs:
self.d[f] = {t}
else:
vs.add(t)
def add_edges_from(self,es):
for e in es:
self.add_edge(e)
def edges(self):
for f in self.d:
for t in self.d[f]:
yield (f,t)
def number_of_nodes(self):
return len(self.d)
def __repr__(self):
return self.d.__repr__()
def show(self):
dot = gv.Digraph()
for e in self.edges():
#print(e)
f, t = e
dot.edge(str(f), str(t), label='')
#print(dot.source)
show(dot)
# displays graph with graphviz
def show(dot, show=True, file_name='graph.gv'):
dot.render(file_name, view=show)
def showGraph(g,label="",directed=True):
if directed:
dot = gv.Digraph()
else:
dot = gv.Graph()
for e in g.edges():
print(e)
f, t = e
dot.edge(str(f), str(t), label=label)
print(dot.source)
show(dot)
def bit():
G = DGraph()
G.add_edge(("Blade","Samara"))
G.add_edge(("Shadow","Wolfe"))
G.add_edge(("Raven", "Austin"))
G.add_edge(("Blade", "Alice"))
G.add_edge(("Alice","Brandon"))
G.add_edge(("Blade", "Wolfe"))
G.add_edge(("Samara", "Robin"))
G.add_edge(("Samara", "Raven"))
G.add_edge(("Samara", "Hamed"))
G.add_edge(("Wolfe", "Blade"))
G.add_edge(("Hamed", "Samara"))
G.add_edge(("Wolfe", "Shadow"))
G.add_edge(("Brandon", "Brandon"))
G.add_edge(("Hamed", "Hamed"))
G.add_edge(("Austin", "Austin"))
showGraph(G, label="bit")
bit()
def bitten():
G=DGraph()
G.add_edge(("Samara","Blade"))
G.add_edge(("Wolfe","Shadow"))
G.add_edge(("Austin", "Raven"))
G.add_edge(("Alice","Blade"))
G.add_edge(("Brandon", "Alice"))
G.add_edge(("Wolfe", "Blade" ))
G.add_edge(("Robin", "Samara"))
G.add_edge(("Raven", "Samara"))
G.add_edge(("Hamed", "Samara"))
G.add_edge(("Blade", "Wolfe"))
G.add_edge(("Samara", "Hamed"))
G.add_edge(("Shadow", "Wolfe"))
G.add_edge(("Brandon", "Brandon"))
G.add_edge(("Hamed", "Hamed"))
G.add_edge(("Austin", "Austin"))
showGraph(G, label="bitten by")
#bitten()
family = ["Blade", "Samara", "Shadow", "Wolfe", "Raven", "Alice"]
"""
#Do transitive closure call out and the
#matrix power operation should be the same
D = nx.DiGraph()
#D.add_nodes_from("SamaraBladeWolfeShadowAliceRavenBrandonRobinHamedAustin")
D.add_edge("Blade","Samara")
D.add_edge("Shadow","Wolfe")
D.add_edge("Raven", "Austin")
D.add_edge("Blade", "Alice")
D.add_edge("Alice","Brandon")
D.add_edge("Blade", "Wolfe")
D.add_edge("Samara", "Robin")
D.add_edge("Samara", "Raven")
D.add_edge("Samara", "Hamed")
D.add_edge("Wolfe", "Blade")
D.add_edge("Hamed", "Samara")
D.add_edge("Wolfe", "Shadow")
D.add_edge("Brandon", "Brandon")
D.add_edge("Hamed", "Hamed")
D.add_edge("Austin", "Austin")
T = transitive_closure(D)
for e in D.edges(): print(e)
for n in D.nodes(): print(n)
def show(H):
nx.draw(H, with_labels=True, font_weight='bold')
plt.show()
#Use nx.to_numpy_matrix instead of nx.adjacency_matrix
# M = nx.adjacency_matrix(D)
# MT = nx.adjacency_matrix(T)
M = nx.to_numpy_matrix(D)
MT = nx.to_numpy_matrix(T)
M2 = M@M
def mPower(M, k): #M is numpy matrix
assert k >= 1
P = M
for _ in range(k):
P = P @ M
return P
def tc(M):
#compute transitive closure
pass
D1 = nx.DiGraph(M)
D2 = nx.DiGraph(M2)
print('Matrix for Original\n', M)
N = nx.to_numpy_array(D,dtype=int)
print('np_array for Original\n', N)
print('\nMatrix for Transitive Closure\n', MT)
N2 = nx.to_numpy_array(T,dtype=int)
print('np_array for Transitive Closure\n', N2)
show(D) #can use D, T, and numpy matrix power operation
show(T)
show(T)

Create a Pascal’s Triangle

May 31, 2023CodeCatch

0 likes • 1 view

def generate_pascals_triangle(num_rows):
triangle = []
for row in range(num_rows):
# Initialize the row with 1
current_row = [1]
# Calculate the values for the current row
if row > 0:
previous_row = triangle[row - 1]
for i in range(len(previous_row) - 1):
current_row.append(previous_row[i] + previous_row[i + 1])
# Append 1 at the end of the row
current_row.append(1)
# Add the current row to the triangle
triangle.append(current_row)
return triangle
def display_pascals_triangle(triangle):
for row in triangle:
for number in row:
print(number, end=" ")
print()
# Prompt the user for the number of rows
num_rows = int(input("Enter the number of rows for Pascal's Triangle: "))
# Generate Pascal's Triangle
pascals_triangle = generate_pascals_triangle(num_rows)
# Display Pascal's Triangle
display_pascals_triangle(pascals_triangle)

Propositional logic with itertools

Nov 18, 2022AustinLeath

0 likes • 5 views

from itertools import product
V='∀'
E='∃'
def tt(f,n) :
xss=product((0,1),repeat=n)
print('function:',f.__name__)
for xs in xss : print(*xs,':',int(f(*xs)))
print('')
# p \/ (q /\ r) = (p \/ q) /\ (p \/ r)
def prob1(p,q,r) :
x=p or (q and r)
y= (p or q) and (p or r)
return x==y
tt(prob1,3)
# p/\(q\/r)=(p/\q)\/(p/\r)
def prob2(p,q,r) :
x=p and ( q or r )
y=(p and q) or (p and r)
return x==y
tt(prob2,3)
#~(p/\q)=(~p\/~q)
def prob3(p,q) :
x=not (p and q)
y=(not p) or (not q)
return x==y
tt(prob3,2)
#(~(p\/q))=((~p)/\~q)
def prob4(p, q):
x = not(p or q)
y = not p and not q
return x == y
tt(prob4, 2)
#(p/\(p=>q)=>q)
def prob5(p,q):
x= p and ( not p or q)
return not x or q
tt(prob5,2)
# (p=>q)=((p\/q)=q)
def prob6(p,q) :
x = (not p or q)
y=((p or q) == q)
return x==y
tt(prob6,2)
#((p=>q)=(p\/q))=q
def prob7(p,q):
if ((not p or q)==(p or q))==q:
return 1
tt(prob7,2)
#(p=>q)=((p/\q)=p)
def prob8(p,q):
if (not p or q)==((p and q)==p):
return 1
tt(prob8,2)
#((p=>q)=(p/\q))=p
def prob9(p,q):
if ((not p or q)==(p and q))==p:
return '1'
tt(prob9,2)
#(p=>q)/\(q=>r)=>(p=>r)
def prob10(p,q,r) :
x = not ((not p or q) and (not q or r)) or (not p or r)
return x
tt(prob10, 3)
# (p = q) /\ (q => r) => (p => r)
#answer 1
def prob11(p,q,r) :
x = not((p is q) and (not q or r)) or (not p or r)
return x
tt(prob11, 3)
#(p=q)/\(q=>r)=>(p=>r)
#answer 2
def prob11(p,q,r):
x=(p==q) and (not q or r)
y=not p or r
return not x or y
tt(prob11,3)
#((p=>q)/\(q=r))=>(p=>r)
def prob12(p,q,r):
x=(not p or q) and ( q==r )
y=not p or r
return not x or y
tt(prob12,3)
#(p=>q)=>((p/\r)=>(q/\r))
def prob13(p,q,r):
x=not p or q
y=(not(p and r) or ( q and r))
return not x or y
tt(prob13,3)
#Question#2----------------------------------------
#(p=>q)=>r=p=>(q=>r)
def prob14(p,q,r):
x=(not(not p or q) or r)
y=(not p or (not q or r))
return x==y
tt(prob14,3)
def prob15(p, q):
x = not(p and q)
y = not p and not q
return x == y
tt(prob15, 2)
def prob16(p, q):
x = not(p or q)
y = not p or not q
return x == y
tt(prob16, 2)
def prob17(p):
x = p
y = not p
return x == y
tt(prob17, 1)

key of minimum value

Nov 19, 2022CodeCatch

0 likes • 0 views

def key_of_min(d):
return min(d, key = d.get)
key_of_min({'a':4, 'b':0, 'c':13}) # b

bruteforce password cracker

Nov 18, 2022AustinLeath

0 likes • 4 views

import itertools
import string
import time
def guess_password(real):
chars = string.ascii_lowercase + string.ascii_uppercase + string.digits + string.punctuation
attempts = 0
for password_length in range(1, 9):
for guess in itertools.product(chars, repeat=password_length):
startTime = time.time()
attempts += 1
guess = ''.join(guess)
if guess == real:
return 'password is {}. found in {} guesses.'.format(guess, attempts)
loopTime = (time.time() - startTime);
print(guess, attempts, loopTime)
print("\nIt will take A REALLY LONG TIME to crack a long password. Try this out with a 3 or 4 letter password and see how this program works.\n")
val = input("Enter a password you want to crack that is 9 characters or below: ")
print(guess_password(val.lower()))

Fibonacci Series

Nov 18, 2022AustinLeath

0 likes • 8 views

#Python 3: Fibonacci series up to n
def fib(n):
a, b = 0, 1
while a < n:
print(a, end=' ')
a, b = b, a+b
print()
fib(1000)