## Topological sort

0 likes • Nov 19, 2022 • 0 views
Python

## More Python Posts

#### Check Armstrong Number

0 likes • May 31, 2023 • 0 views
Python
```# Function to check Armstrong numberdef is_armstrong_number(number):    # Convert number to string to iterate over its digits    num_str = str(number)        # Calculate the sum of the cubes of each digit    digit_sum = sum(int(digit) ** len(num_str) for digit in num_str)        # Compare the sum with the original number    if digit_sum == number:        return True    else:        return False
# Prompt user for a numbernumber = int(input("Enter a number: "))
# Check if the number is an Armstrong numberif is_armstrong_number(number):    print(number, "is an Armstrong number.")else:    print(number, "is not an Armstrong number.")```

#### Sherlock Holmes Curious Lockbox Solver

0 likes • Mar 12, 2021 • 0 views
Python
`import copybegining = [False,False,False,False,False,None,True,True,True,True,True]#False = black True = whiteits = [0]def swap(layout, step):    layoutCopy = copy.deepcopy(layout)    layoutCopy[(step[0]+step[1])], layoutCopy[step[1]] = layoutCopy[step[1]], layoutCopy[(step[0]+step[1])]    return layoutCopydef isSolved(layout):    for i in range(len(layout)):        if(layout[i] == False):            return (i >= (len(layout)/2))def recurse(layout, its, steps = []):    if isSolved(layout):        its[0] += 1        print(layout,list(x[0] for x in steps))        return    step = None    for i in range(len(layout)):        if(layout[i] == None):            if(i >= 1): #If the empty space could have something to the left                if(layout[i - 1] == False):                    step = [-1,i]                    recurse(swap(layout,step), its, (steps+[step]))                if(i > 1): #If the empty space could have something 2 to the left                    if(layout[i - 2] == False):                        step = [-2,i]                        recurse(swap(layout,step), its, (steps+[step]))            if(i < (len(layout)-1)): #If the empty space could have something to the right                if(layout[i + 1] == True):                    step = [1,i]                    recurse(swap(layout,step), its, (steps+[step]))                if(i < (len(layout)-2)): #If the empty space could have something to the right                    if(layout[i + 2] == True):                        step = [2,i]                        recurse(swap(layout,step), its, (steps+[step]))    its[0] += 1    #return Nonerecurse(begining,its,[])print(its[0])`

#### Finding NULL values within set

0 likes • Oct 7, 2022 • 1 view
Python
`x[cat_var].isnull().sum().sort_values(ascending=False)`

#### Binary search algorithm

0 likes • Nov 19, 2022 • 0 views
Python
`""" Binary Search Algorithm ----------------------------------------"""#iterative implementation of binary search in Pythondef binary_search(a_list, item):    """Performs iterative binary search to find the position of an integer in a given, sorted, list.    a_list -- sorted list of integers    item -- integer you are searching for the position of    """    first = 0    last = len(a_list) - 1    while first <= last:        i = (first + last) / 2        if a_list[i] == item:            return ' found at position '.format(item=item, i=i)        elif a_list[i] > item:            last = i - 1        elif a_list[i] < item:            first = i + 1        else:            return ' not found in the list'.format(item=item)#recursive implementation of binary search in Pythondef binary_search_recursive(a_list, item):    """Performs recursive binary search of an integer in a given, sorted, list.    a_list -- sorted list of integers    item -- integer you are searching for the position of    """    first = 0    last = len(a_list) - 1    if len(a_list) == 0:        return ' was not found in the list'.format(item=item)    else:        i = (first + last) // 2        if item == a_list[i]:            return ' found'.format(item=item)        else:            if a_list[i] < item:                return binary_search_recursive(a_list[i+1:], item)            else:                return binary_search_recursive(a_list[:i], item)`

#### UNT CSCE 2100 Question 1

0 likes • Nov 18, 2022 • 1 view
Python
```#question1.pydef rose(n) :  if n==0 :     yield []  else :    for k in range(0,n) :          for l in rose(k) :        for r in rose(n-1-k) :                  yield [l]+[r]+[r]            def start(n) :  for x in rose(n) :       print(x) #basically I am printing x for each rose(n) file

print("starting program: \n")start(2) # here is where I call the start function```

#### print indices

0 likes • Nov 18, 2022 • 0 views
Python
```# Listlst = [1, 2, 3, 'Alice', 'Alice']
# One-Linerindices = [i for i in range(len(lst)) if lst[i]=='Alice']
# Resultprint(indices)# [3, 4]```