Skip to main content

Topological sort

0 likes • Nov 19, 2022 • 0 views
Python
Loading...

More Python Posts

Check Armstrong Number

0 likes • May 31, 2023 • 0 views
Python
# Function to check Armstrong number
def is_armstrong_number(number):
# Convert number to string to iterate over its digits
num_str = str(number)
# Calculate the sum of the cubes of each digit
digit_sum = sum(int(digit) ** len(num_str) for digit in num_str)
# Compare the sum with the original number
if digit_sum == number:
return True
else:
return False
# Prompt user for a number
number = int(input("Enter a number: "))
# Check if the number is an Armstrong number
if is_armstrong_number(number):
print(number, "is an Armstrong number.")
else:
print(number, "is not an Armstrong number.")

Sherlock Holmes Curious Lockbox Solver

0 likes • Mar 12, 2021 • 0 views
Python
import copy
begining = [False,False,False,False,False,None,True,True,True,True,True]
#False = black True = white
its = [0]
def swap(layout, step):
layoutCopy = copy.deepcopy(layout)
layoutCopy[(step[0]+step[1])], layoutCopy[step[1]] = layoutCopy[step[1]], layoutCopy[(step[0]+step[1])]
return layoutCopy
def isSolved(layout):
for i in range(len(layout)):
if(layout[i] == False):
return (i >= (len(layout)/2))
def recurse(layout, its, steps = []):
if isSolved(layout):
its[0] += 1
print(layout,list(x[0] for x in steps))
return
step = None
for i in range(len(layout)):
if(layout[i] == None):
if(i >= 1): #If the empty space could have something to the left
if(layout[i - 1] == False):
step = [-1,i]
recurse(swap(layout,step), its, (steps+[step]))
if(i > 1): #If the empty space could have something 2 to the left
if(layout[i - 2] == False):
step = [-2,i]
recurse(swap(layout,step), its, (steps+[step]))
if(i < (len(layout)-1)): #If the empty space could have something to the right
if(layout[i + 1] == True):
step = [1,i]
recurse(swap(layout,step), its, (steps+[step]))
if(i < (len(layout)-2)): #If the empty space could have something to the right
if(layout[i + 2] == True):
step = [2,i]
recurse(swap(layout,step), its, (steps+[step]))
its[0] += 1
#return None
recurse(begining,its,[])
print(its[0])

Finding NULL values within set

0 likes • Oct 7, 2022 • 1 view
Python
x[cat_var].isnull().sum().sort_values(ascending=False)

Binary search algorithm

0 likes • Nov 19, 2022 • 0 views
Python
""" Binary Search Algorithm
----------------------------------------
"""
#iterative implementation of binary search in Python
def binary_search(a_list, item):
"""Performs iterative binary search to find the position of an integer in a given, sorted, list.
a_list -- sorted list of integers
item -- integer you are searching for the position of
"""
first = 0
last = len(a_list) - 1
while first <= last:
i = (first + last) / 2
if a_list[i] == item:
return ' found at position '.format(item=item, i=i)
elif a_list[i] > item:
last = i - 1
elif a_list[i] < item:
first = i + 1
else:
return ' not found in the list'.format(item=item)
#recursive implementation of binary search in Python
def binary_search_recursive(a_list, item):
"""Performs recursive binary search of an integer in a given, sorted, list.
a_list -- sorted list of integers
item -- integer you are searching for the position of
"""
first = 0
last = len(a_list) - 1
if len(a_list) == 0:
return ' was not found in the list'.format(item=item)
else:
i = (first + last) // 2
if item == a_list[i]:
return ' found'.format(item=item)
else:
if a_list[i] < item:
return binary_search_recursive(a_list[i+1:], item)
else:
return binary_search_recursive(a_list[:i], item)

UNT CSCE 2100 Question 1

0 likes • Nov 18, 2022 • 1 view
Python
#question1.py
def rose(n) :
if n==0 :
yield []
else :
for k in range(0,n) :
for l in rose(k) :
for r in rose(n-1-k) :
yield [l]+[r]+[r]
def start(n) :
for x in rose(n) :
print(x) #basically I am printing x for each rose(n) file
print("starting program: \n")
start(2) # here is where I call the start function

print indices

0 likes • Nov 18, 2022 • 0 views
Python
# List
lst = [1, 2, 3, 'Alice', 'Alice']
# One-Liner
indices = [i for i in range(len(lst)) if lst[i]=='Alice']
# Result
print(indices)
# [3, 4]