Loading...
More Python Posts
https://codecatch.net/post/06c9f5b7-1e00-40dc-b436-b8cccc4b69be
import stringdef caesar(text, shift, alphabets):def shift_alphabet(alphabet):return alphabet[shift:] + alphabet[:shift]shifted_alphabets = tuple(map(shift_alphabet, alphabets))final_alphabet = "".join(alphabets)final_shifted_alphabet = "".join(shifted_alphabets)table = str.maketrans(final_alphabet, final_shifted_alphabet)return text.translate(table)plain_text = "Hey Skrome, welcome to CodeCatch"print(caesar(plain_text, 8, [string.ascii_lowercase, string.ascii_uppercase, string.punctuation]))
import calendar# Prompt user for year and monthyear = int(input("Enter the year: "))month = int(input("Enter the month: "))# Create a calendar objectcal = calendar.monthcalendar(year, month)# Display the calendarprint(calendar.month_name[month], year)print("Mon Tue Wed Thu Fri Sat Sun")for week in cal:for day in week:if day == 0:print(" ", end="")else:print(str(day).rjust(2), " ", end="")print()
import itertoolsimport stringimport timedef guess_password(real):chars = string.ascii_lowercase + string.ascii_uppercase + string.digits + string.punctuationattempts = 0for password_length in range(1, 9):for guess in itertools.product(chars, repeat=password_length):startTime = time.time()attempts += 1guess = ''.join(guess)if guess == real:return 'password is {}. found in {} guesses.'.format(guess, attempts)loopTime = (time.time() - startTime);print(guess, attempts, loopTime)print("\nIt will take A REALLY LONG TIME to crack a long password. Try this out with a 3 or 4 letter password and see how this program works.\n")val = input("Enter a password you want to crack that is 9 characters or below: ")print(guess_password(val.lower()))
# Python Program to calculate the square rootnum = float(input('Enter a number: '))num_sqrt = num ** 0.5print('The square root of %0.3f is %0.3f'%(num ,num_sqrt))
#SetsU = {0,1,2,3,4,5,6,7,8,9}P = {1,2,3,4}Q = {4,5,6}R = {3,4,6,8,9}def set2bits(xs,us) :bs=[]for x in us :if x in xs :bs.append(1)else:bs.append(0)assert len(us) == len(bs)return bsdef union(set1,set2) :finalSet = set()bitList1 = set2bits(set1, U)bitList2 = set2bits(set2, U)for i in range(len(U)) :if(bitList1[i] or bitList2[i]) :finalSet.add(i)return finalSetdef intersection(set1,set2) :finalSet = set()bitList1 = set2bits(set1, U)bitList2 = set2bits(set2, U)for i in range(len(U)) :if(bitList1[i] and bitList2[i]) :finalSet.add(i)return finalSetdef compliment(set1) :finalSet = set()bitList = set2bits(set1, U)for i in range(len(U)) :if(not bitList[i]) :finalSet.add(i)return finalSetdef implication(a,b):return union(compliment(a), b)################################################################################################################# Problems 1-6 ###################################################################################################################################p \/ (q /\ r) = (p \/ q) /\ (p \/ r)def prob1():return union(P, intersection(Q,R)) == intersection(union(P,Q), union(P,R))#p /\ (q \/ r) = (p /\ q) \/ (p /\ r)def prob2():return intersection(P, union(Q,R)) == union(intersection(P,Q), intersection(P,R))#~(p /\ q) = ~p \/ ~qdef prob3():return compliment(intersection(P,R)) == union(compliment(P), compliment(R))#~(p \/ q) = ~p /\ ~qdef prob4():return compliment(union(P,Q)) == intersection(compliment(P), compliment(Q))#(p=>q) = (~q => ~p)def prob5():return implication(P,Q) == implication(compliment(Q), compliment(P))#(p => q) /\ (q => r) => (p => r)def prob6():return implication(intersection(implication(P,Q), implication(Q,R)), implication(P,R))print("Problem 1: ", prob1())print("Problem 2: ", prob2())print("Problem 3: ", prob3())print("Problem 4: ", prob4())print("Problem 5: ", prob5())print("Problem 6: ", prob6())'''Problem 1: TrueProblem 2: TrueProblem 3: TrueProblem 4: TrueProblem 5: TrueProblem 6: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}'''