Loading...
More Python Posts
# @return a list of strings, [s1, s2]def letterCombinations(self, digits):if '' == digits: return []kvmaps = {'2': 'abc','3': 'def','4': 'ghi','5': 'jkl','6': 'mno','7': 'pqrs','8': 'tuv','9': 'wxyz'}return reduce(lambda acc, digit: [x + y for x in acc for y in kvmaps[digit]], digits, [''])
import mathdef factorial(n):print(math.factorial(n))return (math.factorial(n))factorial(5)factorial(10)factorial(15)
# Input for row and columnR = int(input())C = int(input())# Using list comprehension for inputmatrix = [[int(input()) for x in range (C)] for y in range(R)]
import itertoolsdef compute_permutations(string):# Generate all permutations of the stringpermutations = itertools.permutations(string)# Convert each permutation tuple to a stringpermutations = [''.join(permutation) for permutation in permutations]return permutations# Prompt the user for a stringstring = input("Enter a string: ")# Compute permutationspermutations = compute_permutations(string)# Display the permutationsprint("Permutations:")for permutation in permutations:print(permutation)
# Prompt user for base and heightbase = float(input("Enter the base of the triangle: "))height = float(input("Enter the height of the triangle: "))# Calculate the areaarea = (base * height) / 2# Display the resultprint("The area of the triangle is:", area)
# Python program for Bitonic Sort. Note that this program# works only when size of input is a power of 2.# The parameter dir indicates the sorting direction, ASCENDING# or DESCENDING; if (a[i] > a[j]) agrees with the direction,# then a[i] and a[j] are interchanged.*/def compAndSwap(a, i, j, dire):if (dire==1 and a[i] > a[j]) or (dire==0 and a[i] > a[j]):a[i],a[j] = a[j],a[i]# It recursively sorts a bitonic sequence in ascending order,# if dir = 1, and in descending order otherwise (means dir=0).# The sequence to be sorted starts at index position low,# the parameter cnt is the number of elements to be sorted.def bitonicMerge(a, low, cnt, dire):if cnt > 1:k = cnt/2for i in range(low , low+k):compAndSwap(a, i, i+k, dire)bitonicMerge(a, low, k, dire)bitonicMerge(a, low+k, k, dire)# This funcion first produces a bitonic sequence by recursively# sorting its two halves in opposite sorting orders, and then# calls bitonicMerge to make them in the same orderdef bitonicSort(a, low, cnt,dire):if cnt > 1:k = cnt/2bitonicSort(a, low, k, 1)bitonicSort(a, low+k, k, 0)bitonicMerge(a, low, cnt, dire)# Caller of bitonicSort for sorting the entire array of length N# in ASCENDING orderdef sort(a,N, up):bitonicSort(a,0, N, up)# Driver code to test abovea = [3, 7, 4, 8, 6, 2, 1, 5]n = len(a)up = 1sort(a, n, up)print ("\n\nSorted array is")for i in range(n):print("%d" %a[i]),