• Nov 19, 2022 •CodeCatch
0 likes • 6 views
""" Binary Search Algorithm ---------------------------------------- """ #iterative implementation of binary search in Python def binary_search(a_list, item): """Performs iterative binary search to find the position of an integer in a given, sorted, list. a_list -- sorted list of integers item -- integer you are searching for the position of """ first = 0 last = len(a_list) - 1 while first <= last: i = (first + last) / 2 if a_list[i] == item: return ' found at position '.format(item=item, i=i) elif a_list[i] > item: last = i - 1 elif a_list[i] < item: first = i + 1 else: return ' not found in the list'.format(item=item) #recursive implementation of binary search in Python def binary_search_recursive(a_list, item): """Performs recursive binary search of an integer in a given, sorted, list. a_list -- sorted list of integers item -- integer you are searching for the position of """ first = 0 last = len(a_list) - 1 if len(a_list) == 0: return ' was not found in the list'.format(item=item) else: i = (first + last) // 2 if item == a_list[i]: return ' found'.format(item=item) else: if a_list[i] < item: return binary_search_recursive(a_list[i+1:], item) else: return binary_search_recursive(a_list[:i], item)
• May 31, 2023 •CodeCatch
0 likes • 1 view
# Function to multiply two matrices def multiply_matrices(matrix1, matrix2): # Check if the matrices can be multiplied if len(matrix1[0]) != len(matrix2): print("Error: The number of columns in the first matrix must be equal to the number of rows in the second matrix.") return None # Create the result matrix filled with zeros result = [[0 for _ in range(len(matrix2[0]))] for _ in range(len(matrix1))] # Perform matrix multiplication for i in range(len(matrix1)): for j in range(len(matrix2[0])): for k in range(len(matrix2)): result[i][j] += matrix1[i][k] * matrix2[k][j] return result # Example matrices matrix1 = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] matrix2 = [[10, 11], [12, 13], [14, 15]] # Multiply the matrices result_matrix = multiply_matrices(matrix1, matrix2) # Display the result if result_matrix is not None: print("Result:") for row in result_matrix: print(row)
0 likes • 0 views
# Function to check Armstrong number def is_armstrong_number(number): # Convert number to string to iterate over its digits num_str = str(number) # Calculate the sum of the cubes of each digit digit_sum = sum(int(digit) ** len(num_str) for digit in num_str) # Compare the sum with the original number if digit_sum == number: return True else: return False # Prompt user for a number number = int(input("Enter a number: ")) # Check if the number is an Armstrong number if is_armstrong_number(number): print(number, "is an Armstrong number.") else: print(number, "is not an Armstrong number.")
• Nov 18, 2022 •AustinLeath
# importing the modules import os import shutil # getting the current working directory src_dir = os.getcwd() # printing current directory print(src_dir) # copying the files shutil.copyfile('test.txt', 'test.txt.copy2') #copy src to dst # printing the list of new files print(os.listdir())
0 likes • 3 views
# Input for row and column R = int(input()) C = int(input()) # Using list comprehension for input matrix = [[int(input()) for x in range (C)] for y in range(R)]
• Sep 9, 2023 •AustinLeath
0 likes • 24 views
print("test")