Skip to main content
Loading...

More Python Posts

import random
import time

def generate_maze(width, height):
    """Generate a random maze using depth-first search"""
    maze = [[1 for _ in range(width)] for _ in range(height)]
    
    def carve(x, y):
        maze[y][x] = 0
        directions = [(1, 0), (-1, 0), (0, 1), (0, -1)]
        random.shuffle(directions)
        
        for dx, dy in directions:
            nx, ny = x + dx*2, y + dy*2
            if 0 <= nx < width and 0 <= ny < height and maze[ny][nx] == 1:
                maze[y + dy][x + dx] = 0
                carve(nx, ny)
    
    carve(1, 1)
    maze[0][1] = 0  # Entrance
    maze[height-1][width-2] = 0  # Exit
    return maze

def print_maze(maze, path=None):
    """Print the maze with ASCII characters"""
    if path is None:
        path = []
    
    for y in range(len(maze)):
        for x in range(len(maze[0])):
            if (x, y) in path:
                print('◍', end=' ')
            elif maze[y][x] == 0:
                print(' ', end=' ')
            else:
                print('▓', end=' ')
        print()

def solve_maze(maze, start, end):
    """Solve the maze using recursive backtracking"""
    visited = set()
    path = []
    
    def dfs(x, y):
        if (x, y) == end:
            path.append((x, y))
            return True
        
        if (x, y) in visited or maze[y][x] == 1:
            return False
            
        visited.add((x, y))
        path.append((x, y))
        
        for dx, dy in [(1, 0), (-1, 0), (0, 1), (0, -1)]:
            if dfs(x + dx, y + dy):
                return True
                
        path.pop()
        return False
    
    dfs(*start)
    return path

# Generate and solve a maze
width, height = 21, 11  # Should be odd numbers
maze = generate_maze(width, height)
start = (1, 0)
end = (width-2, height-1)

print("Generated Maze:")
print_maze(maze)

print("\nSolving Maze...")
time.sleep(2)
path = solve_maze(maze, start, end)

print("\nSolved Maze:")
print_maze(maze, path)
""" Calculator
----------------------------------------
"""
def addition ():
    print("Addition")
    n = float(input("Enter the number: "))
    t = 0 //Total number enter
    ans = 0
    while n != 0:
        ans = ans + n
        t+=1
        n = float(input("Enter another number (0 to calculate): "))
    return [ans,t]
def subtraction ():
    print("Subtraction");
    n = float(input("Enter the number: "))
    t = 0 //Total number enter
    sum = 0
    while n != 0:
        ans = ans - n
        t+=1
        n = float(input("Enter another number (0 to calculate): "))
    return [ans,t]
def multiplication ():
    print("Multiplication")
    n = float(input("Enter the number: "))
    t = 0 //Total number enter
    ans = 1
    while n != 0:
        ans = ans * n
        t+=1
        n = float(input("Enter another number (0 to calculate): "))
    return [ans,t]
def average():
    an = []
    an = addition()
    t = an[1]
    a = an[0]
    ans = a / t
    return [ans,t]
// main...
while True:
    list = []
    print(" My first python program!")
    print(" Simple Calculator in python by Malik Umer Farooq")
    print(" Enter 'a' for addition")
    print(" Enter 's' for substraction")
    print(" Enter 'm' for multiplication")
    print(" Enter 'v' for average")
    print(" Enter 'q' for quit")
    c = input(" ")
    if c != 'q':
        if c == 'a':
            list = addition()
            print("Ans = ", list[0], " total inputs ",list[1])
        elif c == 's':
            list = subtraction()
            print("Ans = ", list[0], " total inputs ",list[1])
        elif c == 'm':
            list = multiplication()
            print("Ans = ", list[0], " total inputs ",list[1])
        elif c == 'v':
            list = average()
            print("Ans = ", list[0], " total inputs ",list[1])
        else:
            print ("Sorry, invilid character")
    else:
        break
#Sets
U = {0,1,2,3,4,5,6,7,8,9}
P = {1,2,3,4}
Q = {4,5,6}
R = {3,4,6,8,9}

def set2bits(xs,us) :
    bs=[]
    for x in us :
        if x in xs :
            bs.append(1)
        else:
            bs.append(0)
    assert len(us) == len(bs)
    return bs

def union(set1,set2) :
    finalSet = set()
    bitList1 = set2bits(set1, U)
    bitList2 = set2bits(set2, U)

    for i in range(len(U)) :
        if(bitList1[i] or bitList2[i]) :
            finalSet.add(i)

    return finalSet

def intersection(set1,set2) :
    finalSet = set()
    bitList1 = set2bits(set1, U)
    bitList2 = set2bits(set2, U)

    for i in range(len(U)) :
        if(bitList1[i] and bitList2[i]) :
            finalSet.add(i)

    return finalSet

def compliment(set1) :
    finalSet = set()
    bitList = set2bits(set1, U)

    for i in range(len(U)) :
        if(not bitList[i]) :
            finalSet.add(i)

    return finalSet

def implication(a,b):
    return union(compliment(a), b)

###########################################################################################
######################         Problems 1-6         #######################################
###########################################################################################

#p \/ (q /\ r) = (p \/ q) /\ (p \/ r)
def prob1():
    return union(P, intersection(Q,R)) == intersection(union(P,Q), union(P,R))

#p /\ (q \/ r) = (p /\ q) \/ (p /\ r)
def prob2():
    return intersection(P, union(Q,R)) == union(intersection(P,Q), intersection(P,R))

#~(p /\ q) = ~p \/ ~q
def prob3():
    return compliment(intersection(P,R)) == union(compliment(P), compliment(R))

#~(p \/ q) = ~p /\ ~q
def prob4():
    return compliment(union(P,Q)) == intersection(compliment(P), compliment(Q))

#(p=>q) = (~q => ~p)
def prob5():
    return implication(P,Q) == implication(compliment(Q), compliment(P))

#(p => q) /\ (q => r)  =>  (p => r)
def prob6():
    return implication(intersection(implication(P,Q), implication(Q,R)), implication(P,R))


print("Problem 1: ", prob1())
print("Problem 2: ", prob2())
print("Problem 3: ", prob3())
print("Problem 4: ", prob4())
print("Problem 5: ", prob5())
print("Problem 6: ", prob6())

'''
Problem 1:  True
Problem 2:  True
Problem 3:  True
Problem 4:  True
Problem 5:  True
Problem 6:  {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
'''