Skip to main content

Untitled

Apr 21, 2023sebastianagauyao2002-61a8
Loading...

More Python Posts

Untitled

Sep 14, 2024rgannedo-6205

0 likes • 2 views

https://codecatch.net/post/06c9f5b7-1e00-40dc-b436-b8cccc4b69be

Selection sort

Nov 19, 2022CodeCatch

0 likes • 0 views

# Python program for implementation of Selection
# Sort
import sys
A = [64, 25, 12, 22, 11]
# Traverse through all array elements
for i in range(len(A)):
# Find the minimum element in remaining
# unsorted array
min_idx = i
for j in range(i+1, len(A)):
if A[min_idx] > A[j]:
min_idx = j
# Swap the found minimum element with
# the first element
A[i], A[min_idx] = A[min_idx], A[i]
# Driver code to test above
print ("Sorted array")
for i in range(len(A)):
print("%d" %A[i]),

Hello, python

Jan 20, 2021Ntindle

0 likes • 4 views

print(“Hello World”)

Topological sort

Nov 19, 2022CodeCatch

0 likes • 3 views

#Python program to print topological sorting of a DAG
from collections import defaultdict
#Class to represent a graph
class Graph:
def __init__(self,vertices):
self.graph = defaultdict(list) #dictionary containing adjacency List
self.V = vertices #No. of vertices
# function to add an edge to graph
def addEdge(self,u,v):
self.graph[u].append(v)
# A recursive function used by topologicalSort
def topologicalSortUtil(self,v,visited,stack):
# Mark the current node as visited.
visited[v] = True
# Recur for all the vertices adjacent to this vertex
for i in self.graph[v]:
if visited[i] == False:
self.topologicalSortUtil(i,visited,stack)
# Push current vertex to stack which stores result
stack.insert(0,v)
# The function to do Topological Sort. It uses recursive
# topologicalSortUtil()
def topologicalSort(self):
# Mark all the vertices as not visited
visited = [False]*self.V
stack =[]
# Call the recursive helper function to store Topological
# Sort starting from all vertices one by one
for i in range(self.V):
if visited[i] == False:
self.topologicalSortUtil(i,visited,stack)
# Print contents of stack
print(stack)
g= Graph(6)
g.addEdge(5, 2);
g.addEdge(5, 0);
g.addEdge(4, 0);
g.addEdge(4, 1);
g.addEdge(2, 3);
g.addEdge(3, 1);
print("Following is a Topological Sort of the given graph")
g.topologicalSort()

Multiply Two Matrices

May 31, 2023CodeCatch

0 likes • 0 views

# Function to multiply two matrices
def multiply_matrices(matrix1, matrix2):
# Check if the matrices can be multiplied
if len(matrix1[0]) != len(matrix2):
print("Error: The number of columns in the first matrix must be equal to the number of rows in the second matrix.")
return None
# Create the result matrix filled with zeros
result = [[0 for _ in range(len(matrix2[0]))] for _ in range(len(matrix1))]
# Perform matrix multiplication
for i in range(len(matrix1)):
for j in range(len(matrix2[0])):
for k in range(len(matrix2)):
result[i][j] += matrix1[i][k] * matrix2[k][j]
return result
# Example matrices
matrix1 = [[1, 2, 3],
[4, 5, 6],
[7, 8, 9]]
matrix2 = [[10, 11],
[12, 13],
[14, 15]]
# Multiply the matrices
result_matrix = multiply_matrices(matrix1, matrix2)
# Display the result
if result_matrix is not None:
print("Result:")
for row in result_matrix:
print(row)

Bitwise Lambda Overflow Calculations

Aug 12, 2024AustinLeath

0 likes • 5 views

magnitude = lambda bits: 1_000_000_000_000_000_000 % (2 ** bits)
sign = lambda bits: -1 ** (1_000_000_000_000_000_000 // (2 ** bits))
print("64 bit sum:", magnitude(64) * sign(64))
print("32 bit sum:", magnitude(32) * sign(32))
print("16 bit sum:", magnitude(16) * sign(16))