Skip to main content

bruteforce password cracker

Nov 18, 2022AustinLeath
Loading...

More Python Posts

primes numbers finder

Mar 12, 2021mo_ak

0 likes • 1 view

prime_lists=[] # a list to store the prime numbers
def prime(n): # define prime numbers
if n <= 1:
return False
# divide n by 2... up to n-1
for i in range(2, n):
if n % i == 0: # the remainder should'nt be a 0
return False
else:
prime_lists.append(n)
return True
for n in range(30,1000): # calling function and passing starting point =30 coz we need primes >30
prime(n)
check=0 # a var to limit the output to 10 only
for n in prime_lists:
for x in prime_lists:
val= n *x
if (val > 1000 ):
check=check +1
if (check <10) :
print("the num is:", val , "=",n , "* ", x )
break

Python Fibonacci

Sep 6, 2020C S

0 likes • 0 views

def Fibonacci(n):
if n<0:
print("Incorrect input")
# First Fibonacci number is 0
elif n==1:
return 0
# Second Fibonacci number is 1
elif n==2:
return 1
else:
return Fibonacci(n-1)+Fibonacci(n-2)
# Driver Program
print(Fibonacci(9))

Find Coin

Oct 4, 2023AustinLeath

0 likes • 10 views

weigh = lambda a,b: sum(b)-sum(a)
FindCoin = lambda A: 0 if (n := len(A)) == 1 else (m := n//3) * (w := 1 + weigh(A[:m], A[2*m:])) + FindCoin(A[m*w:m*(w+1)])
print(FindCoin([1,1,1,1,1,1,1,2,1]))

Finding NULL values within set

Oct 7, 2022KETRICK

0 likes • 4 views

x[cat_var].isnull().sum().sort_values(ascending=False)

when predicate lambda

Nov 19, 2022CodeCatch

0 likes • 6 views

def when(predicate, when_true):
return lambda x: when_true(x) if predicate(x) else x
double_even_numbers = when(lambda x: x % 2 == 0, lambda x : x * 2)
print(double_even_numbers(2)) # 4
print(double_even_numbers(1)) # 1

Propositional logic with itertools

Nov 18, 2022AustinLeath

0 likes • 5 views

from itertools import product
V='∀'
E='∃'
def tt(f,n) :
xss=product((0,1),repeat=n)
print('function:',f.__name__)
for xs in xss : print(*xs,':',int(f(*xs)))
print('')
# p \/ (q /\ r) = (p \/ q) /\ (p \/ r)
def prob1(p,q,r) :
x=p or (q and r)
y= (p or q) and (p or r)
return x==y
tt(prob1,3)
# p/\(q\/r)=(p/\q)\/(p/\r)
def prob2(p,q,r) :
x=p and ( q or r )
y=(p and q) or (p and r)
return x==y
tt(prob2,3)
#~(p/\q)=(~p\/~q)
def prob3(p,q) :
x=not (p and q)
y=(not p) or (not q)
return x==y
tt(prob3,2)
#(~(p\/q))=((~p)/\~q)
def prob4(p, q):
x = not(p or q)
y = not p and not q
return x == y
tt(prob4, 2)
#(p/\(p=>q)=>q)
def prob5(p,q):
x= p and ( not p or q)
return not x or q
tt(prob5,2)
# (p=>q)=((p\/q)=q)
def prob6(p,q) :
x = (not p or q)
y=((p or q) == q)
return x==y
tt(prob6,2)
#((p=>q)=(p\/q))=q
def prob7(p,q):
if ((not p or q)==(p or q))==q:
return 1
tt(prob7,2)
#(p=>q)=((p/\q)=p)
def prob8(p,q):
if (not p or q)==((p and q)==p):
return 1
tt(prob8,2)
#((p=>q)=(p/\q))=p
def prob9(p,q):
if ((not p or q)==(p and q))==p:
return '1'
tt(prob9,2)
#(p=>q)/\(q=>r)=>(p=>r)
def prob10(p,q,r) :
x = not ((not p or q) and (not q or r)) or (not p or r)
return x
tt(prob10, 3)
# (p = q) /\ (q => r) => (p => r)
#answer 1
def prob11(p,q,r) :
x = not((p is q) and (not q or r)) or (not p or r)
return x
tt(prob11, 3)
#(p=q)/\(q=>r)=>(p=>r)
#answer 2
def prob11(p,q,r):
x=(p==q) and (not q or r)
y=not p or r
return not x or y
tt(prob11,3)
#((p=>q)/\(q=r))=>(p=>r)
def prob12(p,q,r):
x=(not p or q) and ( q==r )
y=not p or r
return not x or y
tt(prob12,3)
#(p=>q)=>((p/\r)=>(q/\r))
def prob13(p,q,r):
x=not p or q
y=(not(p and r) or ( q and r))
return not x or y
tt(prob13,3)
#Question#2----------------------------------------
#(p=>q)=>r=p=>(q=>r)
def prob14(p,q,r):
x=(not(not p or q) or r)
y=(not p or (not q or r))
return x==y
tt(prob14,3)
def prob15(p, q):
x = not(p and q)
y = not p and not q
return x == y
tt(prob15, 2)
def prob16(p, q):
x = not(p or q)
y = not p or not q
return x == y
tt(prob16, 2)
def prob17(p):
x = p
y = not p
return x == y
tt(prob17, 1)