Loading...
More Python Posts
# Python program for implementation of Radix Sort# A function to do counting sort of arr[] according to# the digit represented by exp.def countingSort(arr, exp1):n = len(arr)# The output array elements that will have sorted arroutput = [0] * (n)# initialize count array as 0count = [0] * (10)# Store count of occurrences in count[]for i in range(0, n):index = (arr[i]/exp1)count[int((index)%10)] += 1# Change count[i] so that count[i] now contains actual# position of this digit in output arrayfor i in range(1,10):count[i] += count[i-1]# Build the output arrayi = n-1while i>=0:index = (arr[i]/exp1)output[ count[ int((index)%10) ] - 1] = arr[i]count[int((index)%10)] -= 1i -= 1# Copying the output array to arr[],# so that arr now contains sorted numbersi = 0for i in range(0,len(arr)):arr[i] = output[i]# Method to do Radix Sortdef radixSort(arr):# Find the maximum number to know number of digitsmax1 = max(arr)# Do counting sort for every digit. Note that instead# of passing digit number, exp is passed. exp is 10^i# where i is current digit numberexp = 1while max1/exp > 0:countingSort(arr,exp)exp *= 10# Driver code to test abovearr = [ 170, 45, 75, 90, 802, 24, 2, 66]radixSort(arr)for i in range(len(arr)):print(arr[i]),
# Python program for Bitonic Sort. Note that this program# works only when size of input is a power of 2.# The parameter dir indicates the sorting direction, ASCENDING# or DESCENDING; if (a[i] > a[j]) agrees with the direction,# then a[i] and a[j] are interchanged.*/def compAndSwap(a, i, j, dire):if (dire==1 and a[i] > a[j]) or (dire==0 and a[i] > a[j]):a[i],a[j] = a[j],a[i]# It recursively sorts a bitonic sequence in ascending order,# if dir = 1, and in descending order otherwise (means dir=0).# The sequence to be sorted starts at index position low,# the parameter cnt is the number of elements to be sorted.def bitonicMerge(a, low, cnt, dire):if cnt > 1:k = cnt/2for i in range(low , low+k):compAndSwap(a, i, i+k, dire)bitonicMerge(a, low, k, dire)bitonicMerge(a, low+k, k, dire)# This funcion first produces a bitonic sequence by recursively# sorting its two halves in opposite sorting orders, and then# calls bitonicMerge to make them in the same orderdef bitonicSort(a, low, cnt,dire):if cnt > 1:k = cnt/2bitonicSort(a, low, k, 1)bitonicSort(a, low+k, k, 0)bitonicMerge(a, low, cnt, dire)# Caller of bitonicSort for sorting the entire array of length N# in ASCENDING orderdef sort(a,N, up):bitonicSort(a,0, N, up)# Driver code to test abovea = [3, 7, 4, 8, 6, 2, 1, 5]n = len(a)up = 1sort(a, n, up)print ("\n\nSorted array is")for i in range(n):print("%d" %a[i]),
def Fibonacci(n):if n<0:print("Incorrect input")# First Fibonacci number is 0elif n==1:return 0# Second Fibonacci number is 1elif n==2:return 1else:return Fibonacci(n-1)+Fibonacci(n-2)# Driver Programprint(Fibonacci(9))
"""Assignment 6The goal is to make a graph ofwho bit who and who was bitten.There should be 10 nodes and 15 edges.3 arrows of biting each other and3 arrows of someone biting themselves.Networkx can not do self bitingarrows, but it is in the code."""from graphviz import Digraph as DDotGraphfrom graphviz import Graph as UDotGraphimport networkx as nxfrom networkx.algorithms.dag import transitive_closureimport graphviz as gvimport matplotlib.pyplot as pltimport numpy as npfrom numpy.linalg import matrix_power"""class DGraph:def __init__(self):self.d = dict()def clear(self):self.d = dict()def add_node(self,n):if not self.d.get(n):self.d[n] = set()def add_edge(self,e):f,t=eself.add_node(f)self.add_node(t)vs=self.d.get(f)if not vs:self.d[f] = {t}else:vs.add(t)def add_edges_from(self,es):for e in es:self.add_edge(e)def edges(self):for f in self.d:for t in self.d[f]:yield (f,t)def number_of_nodes(self):return len(self.d)def __repr__(self):return self.d.__repr__()def show(self):dot = gv.Digraph()for e in self.edges():#print(e)f, t = edot.edge(str(f), str(t), label='')#print(dot.source)show(dot)# displays graph with graphvizdef show(dot, show=True, file_name='graph.gv'):dot.render(file_name, view=show)def showGraph(g,label="",directed=True):if directed:dot = gv.Digraph()else:dot = gv.Graph()for e in g.edges():print(e)f, t = edot.edge(str(f), str(t), label=label)print(dot.source)show(dot)def bit():G = DGraph()G.add_edge(("Blade","Samara"))G.add_edge(("Shadow","Wolfe"))G.add_edge(("Raven", "Austin"))G.add_edge(("Blade", "Alice"))G.add_edge(("Alice","Brandon"))G.add_edge(("Blade", "Wolfe"))G.add_edge(("Samara", "Robin"))G.add_edge(("Samara", "Raven"))G.add_edge(("Samara", "Hamed"))G.add_edge(("Wolfe", "Blade"))G.add_edge(("Hamed", "Samara"))G.add_edge(("Wolfe", "Shadow"))G.add_edge(("Brandon", "Brandon"))G.add_edge(("Hamed", "Hamed"))G.add_edge(("Austin", "Austin"))showGraph(G, label="bit")bit()def bitten():G=DGraph()G.add_edge(("Samara","Blade"))G.add_edge(("Wolfe","Shadow"))G.add_edge(("Austin", "Raven"))G.add_edge(("Alice","Blade"))G.add_edge(("Brandon", "Alice"))G.add_edge(("Wolfe", "Blade" ))G.add_edge(("Robin", "Samara"))G.add_edge(("Raven", "Samara"))G.add_edge(("Hamed", "Samara"))G.add_edge(("Blade", "Wolfe"))G.add_edge(("Samara", "Hamed"))G.add_edge(("Shadow", "Wolfe"))G.add_edge(("Brandon", "Brandon"))G.add_edge(("Hamed", "Hamed"))G.add_edge(("Austin", "Austin"))showGraph(G, label="bitten by")#bitten()family = ["Blade", "Samara", "Shadow", "Wolfe", "Raven", "Alice"]"""#Do transitive closure call out and the#matrix power operation should be the sameD = nx.DiGraph()#D.add_nodes_from("SamaraBladeWolfeShadowAliceRavenBrandonRobinHamedAustin")D.add_edge("Blade","Samara")D.add_edge("Shadow","Wolfe")D.add_edge("Raven", "Austin")D.add_edge("Blade", "Alice")D.add_edge("Alice","Brandon")D.add_edge("Blade", "Wolfe")D.add_edge("Samara", "Robin")D.add_edge("Samara", "Raven")D.add_edge("Samara", "Hamed")D.add_edge("Wolfe", "Blade")D.add_edge("Hamed", "Samara")D.add_edge("Wolfe", "Shadow")D.add_edge("Brandon", "Brandon")D.add_edge("Hamed", "Hamed")D.add_edge("Austin", "Austin")T = transitive_closure(D)for e in D.edges(): print(e)for n in D.nodes(): print(n)def show(H):nx.draw(H, with_labels=True, font_weight='bold')plt.show()#Use nx.to_numpy_matrix instead of nx.adjacency_matrix# M = nx.adjacency_matrix(D)# MT = nx.adjacency_matrix(T)M = nx.to_numpy_matrix(D)MT = nx.to_numpy_matrix(T)M2 = M@Mdef mPower(M, k): #M is numpy matrixassert k >= 1P = Mfor _ in range(k):P = P @ Mreturn Pdef tc(M):#compute transitive closurepassD1 = nx.DiGraph(M)D2 = nx.DiGraph(M2)print('Matrix for Original\n', M)N = nx.to_numpy_array(D,dtype=int)print('np_array for Original\n', N)print('\nMatrix for Transitive Closure\n', MT)N2 = nx.to_numpy_array(T,dtype=int)print('np_array for Transitive Closure\n', N2)show(D) #can use D, T, and numpy matrix power operationshow(T)show(T)
def byte_size(s):return len(s.encode('utf-8'))byte_size('😀') # 4byte_size('Hello World') # 11
import random# Define the ranks, suits, and create a deckranks = ['Ace', '2', '3', '4', '5', '6', '7', '8', '9', '10', 'Jack', 'Queen', 'King']suits = ['Hearts', 'Diamonds', 'Clubs', 'Spades']deck = [(rank, suit) for rank in ranks for suit in suits]# Shuffle the deckrandom.shuffle(deck)# Display the shuffled deckfor card in deck:print(card[0], "of", card[1])