Skip to main content

Print pyramid pattern

Nov 19, 2022CodeCatch
Loading...

More Python Posts

lambda example

Nov 19, 2022CodeCatch

0 likes • 3 views

list_1 = [1,2,3,4,5,6,7,8,9]
cubed = map(lambda x: pow(x,3), list_1)
print(list(cubed))
#Results
#[1, 8, 27, 64, 125, 216, 343, 512, 729]

Number guessing game

Nov 19, 2022CodeCatch

0 likes • 0 views

""" Number Guessing Game
----------------------------------------
"""
import random
attempts_list = []
def show_score():
if len(attempts_list) <= 0:
print("There is currently no high score, it's yours for the taking!")
else:
print("The current high score is {} attempts".format(min(attempts_list)))
def start_game():
random_number = int(random.randint(1, 10))
print("Hello traveler! Welcome to the game of guesses!")
player_name = input("What is your name? ")
wanna_play = input("Hi, {}, would you like to play the guessing game? (Enter Yes/No) ".format(player_name))
// Where the show_score function USED to be
attempts = 0
show_score()
while wanna_play.lower() == "yes":
try:
guess = input("Pick a number between 1 and 10 ")
if int(guess) < 1 or int(guess) > 10:
raise ValueError("Please guess a number within the given range")
if int(guess) == random_number:
print("Nice! You got it!")
attempts += 1
attempts_list.append(attempts)
print("It took you {} attempts".format(attempts))
play_again = input("Would you like to play again? (Enter Yes/No) ")
attempts = 0
show_score()
random_number = int(random.randint(1, 10))
if play_again.lower() == "no":
print("That's cool, have a good one!")
break
elif int(guess) > random_number:
print("It's lower")
attempts += 1
elif int(guess) < random_number:
print("It's higher")
attempts += 1
except ValueError as err:
print("Oh no!, that is not a valid value. Try again...")
print("({})".format(err))
else:
print("That's cool, have a good one!")
if __name__ == '__main__':
start_game()

CSCE 2100 Question 3

Nov 18, 2022AustinLeath

0 likes • 11 views

# question3.py
from itertools import product
V='∀'
E='∃'
def tt(f,n) :
xss=product((0,1),repeat=n)
print('function:',f.__name__)
for xs in xss : print(*xs,':',int(f(*xs)))
print('')
# this is the logic for part A (p\/q\/r) /\ (p\/q\/~r) /\ (p\/~q\/r) /\ (p\/~q\/~r) /\ (~p\/q\/r) /\ (~p\/q\/~r) /\ (~p\/~q\/r) /\ (~p\/~q\/~r)
def parta(p,q,r) :
a=(p or q or r) and (p or q or not r) and (p or not q or r)and (p or not q or not r)
b=(not p or q or r ) and (not p or q or not r) and (not p or not q or r) and (not p or not q or not r)
c= a and b
return c
def partb(p,q,r) :
a=(p or q and r) and (p or not q or not r) and (p or not q or not r)and (p or q or not r)
b=(not p or q or r ) and (not p or q or not r) and (not p or not q or r) and (not p or not q or not r)
c= a and b
return c
print("part A:")
tt(parta,3)
print("part B:")
tt(partb,3)

Binary search

Sep 22, 2023AustinLeath

0 likes • 24 views

# Python binary search function
def binary_search(arr, target):
left = 0
right = len(arr) - 1
while left <= right:
mid = (left + right) // 2
if arr[mid] == target:
return mid
elif arr[mid] < target:
left = mid + 1
else:
right = mid - 1
return -1
# Usage
arr = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
target = 7
result = binary_search(arr, target)
if result != -1:
print(f"Element is present at index {result}")
else:
print("Element is not present in array")

Print "X" pattern

Nov 19, 2022CodeCatch

0 likes • 0 views

def print_x_pattern(size):
i,j = 0,size - 1
while j >= 0 and i < size:
initial_spaces = ' '*min(i,j)
middle_spaces = ' '*(abs(i - j) - 1)
final_spaces = ' '*(size - 1 - max(i,j))
if j == i:
print(initial_spaces + '*' + final_spaces)
else:
print(initial_spaces + '*' + middle_spaces + '*' + final_spaces)
i += 1
j -= 1
print_x_pattern(7)

Sieve of Eratosthenes

Nov 19, 2022CodeCatch

0 likes • 0 views

# Given a number n, print all primes smaller than or equal to n. It is also given that n is a small number.
# For example, if n is 10, the output should be “2, 3, 5, 7”. If n is 20, the output should be “2, 3, 5, 7, 11, 13, 17, 19”.
# Python program to print all primes smaller than or equal to
# n using Sieve of Eratosthenes
def SieveOfEratosthenes(n):
# Create a boolean array "prime[0..n]" and initialize
# all entries it as true. A value in prime[i] will
# finally be false if i is Not a prime, else true.
prime = [True for i in range(n + 1)]
p = 2
while (p * p <= n):
# If prime[p] is not changed, then it is a prime
if (prime[p] == True):
# Update all multiples of p
for i in range(p * 2, n + 1, p):
prime[i] = False
p += 1
prime[0]= False
prime[1]= False
# Print all prime numbers
for p in range(n + 1):
if prime[p]:
print (p)
# driver program
if __name__=='__main__':
n = 30
print("Following are the prime numbers smaller")
print("than or equal to ", n)
print("than or equal to ", n)
SieveOfEratosthenes(n)