Loading...
More Python Posts
# Python program for implementation of Selection# Sortimport sysA = [64, 25, 12, 22, 11]# Traverse through all array elementsfor i in range(len(A)):# Find the minimum element in remaining# unsorted arraymin_idx = ifor j in range(i+1, len(A)):if A[min_idx] > A[j]:min_idx = j# Swap the found minimum element with# the first elementA[i], A[min_idx] = A[min_idx], A[i]# Driver code to test aboveprint ("Sorted array")for i in range(len(A)):print("%d" %A[i]),
from functools import partialdef curry(fn, *args):return partial(fn, *args)add = lambda x, y: x + yadd10 = curry(add, 10)add10(20) # 30
weigh = lambda a,b: sum(b)-sum(a)FindCoin = lambda A: 0 if (n := len(A)) == 1 else (m := n//3) * (w := 1 + weigh(A[:m], A[2*m:])) + FindCoin(A[m*w:m*(w+1)])print(FindCoin([1,1,1,1,1,1,1,2,1]))
from math import pidef rads_to_degrees(rad):return (rad * 180.0) / pirads_to_degrees(pi / 2) # 90.0
"""Assignment 6The goal is to make a graph ofwho bit who and who was bitten.There should be 10 nodes and 15 edges.3 arrows of biting each other and3 arrows of someone biting themselves.Networkx can not do self bitingarrows, but it is in the code."""from graphviz import Digraph as DDotGraphfrom graphviz import Graph as UDotGraphimport networkx as nxfrom networkx.algorithms.dag import transitive_closureimport graphviz as gvimport matplotlib.pyplot as pltimport numpy as npfrom numpy.linalg import matrix_power"""class DGraph:def __init__(self):self.d = dict()def clear(self):self.d = dict()def add_node(self,n):if not self.d.get(n):self.d[n] = set()def add_edge(self,e):f,t=eself.add_node(f)self.add_node(t)vs=self.d.get(f)if not vs:self.d[f] = {t}else:vs.add(t)def add_edges_from(self,es):for e in es:self.add_edge(e)def edges(self):for f in self.d:for t in self.d[f]:yield (f,t)def number_of_nodes(self):return len(self.d)def __repr__(self):return self.d.__repr__()def show(self):dot = gv.Digraph()for e in self.edges():#print(e)f, t = edot.edge(str(f), str(t), label='')#print(dot.source)show(dot)# displays graph with graphvizdef show(dot, show=True, file_name='graph.gv'):dot.render(file_name, view=show)def showGraph(g,label="",directed=True):if directed:dot = gv.Digraph()else:dot = gv.Graph()for e in g.edges():print(e)f, t = edot.edge(str(f), str(t), label=label)print(dot.source)show(dot)def bit():G = DGraph()G.add_edge(("Blade","Samara"))G.add_edge(("Shadow","Wolfe"))G.add_edge(("Raven", "Austin"))G.add_edge(("Blade", "Alice"))G.add_edge(("Alice","Brandon"))G.add_edge(("Blade", "Wolfe"))G.add_edge(("Samara", "Robin"))G.add_edge(("Samara", "Raven"))G.add_edge(("Samara", "Hamed"))G.add_edge(("Wolfe", "Blade"))G.add_edge(("Hamed", "Samara"))G.add_edge(("Wolfe", "Shadow"))G.add_edge(("Brandon", "Brandon"))G.add_edge(("Hamed", "Hamed"))G.add_edge(("Austin", "Austin"))showGraph(G, label="bit")bit()def bitten():G=DGraph()G.add_edge(("Samara","Blade"))G.add_edge(("Wolfe","Shadow"))G.add_edge(("Austin", "Raven"))G.add_edge(("Alice","Blade"))G.add_edge(("Brandon", "Alice"))G.add_edge(("Wolfe", "Blade" ))G.add_edge(("Robin", "Samara"))G.add_edge(("Raven", "Samara"))G.add_edge(("Hamed", "Samara"))G.add_edge(("Blade", "Wolfe"))G.add_edge(("Samara", "Hamed"))G.add_edge(("Shadow", "Wolfe"))G.add_edge(("Brandon", "Brandon"))G.add_edge(("Hamed", "Hamed"))G.add_edge(("Austin", "Austin"))showGraph(G, label="bitten by")#bitten()family = ["Blade", "Samara", "Shadow", "Wolfe", "Raven", "Alice"]"""#Do transitive closure call out and the#matrix power operation should be the sameD = nx.DiGraph()#D.add_nodes_from("SamaraBladeWolfeShadowAliceRavenBrandonRobinHamedAustin")D.add_edge("Blade","Samara")D.add_edge("Shadow","Wolfe")D.add_edge("Raven", "Austin")D.add_edge("Blade", "Alice")D.add_edge("Alice","Brandon")D.add_edge("Blade", "Wolfe")D.add_edge("Samara", "Robin")D.add_edge("Samara", "Raven")D.add_edge("Samara", "Hamed")D.add_edge("Wolfe", "Blade")D.add_edge("Hamed", "Samara")D.add_edge("Wolfe", "Shadow")D.add_edge("Brandon", "Brandon")D.add_edge("Hamed", "Hamed")D.add_edge("Austin", "Austin")T = transitive_closure(D)for e in D.edges(): print(e)for n in D.nodes(): print(n)def show(H):nx.draw(H, with_labels=True, font_weight='bold')plt.show()#Use nx.to_numpy_matrix instead of nx.adjacency_matrix# M = nx.adjacency_matrix(D)# MT = nx.adjacency_matrix(T)M = nx.to_numpy_matrix(D)MT = nx.to_numpy_matrix(T)M2 = M@Mdef mPower(M, k): #M is numpy matrixassert k >= 1P = Mfor _ in range(k):P = P @ Mreturn Pdef tc(M):#compute transitive closurepassD1 = nx.DiGraph(M)D2 = nx.DiGraph(M2)print('Matrix for Original\n', M)N = nx.to_numpy_array(D,dtype=int)print('np_array for Original\n', N)print('\nMatrix for Transitive Closure\n', MT)N2 = nx.to_numpy_array(T,dtype=int)print('np_array for Transitive Closure\n', N2)show(D) #can use D, T, and numpy matrix power operationshow(T)show(T)
#Loop back to this point once code finishesloop = 1while (loop < 10):#All the questions that the program asks the usernoun = input("Choose a noun: ")p_noun = input("Choose a plural noun: ")noun2 = input("Choose a noun: ")place = input("Name a place: ")adjective = input("Choose an adjective (Describing word): ")noun3 = input("Choose a noun: ")#Displays the story based on the users inputprint ("------------------------------------------")print ("Be kind to your",noun,"- footed", p_noun)print ("For a duck may be somebody's", noun2,",")print ("Be kind to your",p_noun,"in",place)print ("Where the weather is always",adjective,".")print ()print ("You may think that is this the",noun3,",")print ("Well it is.")print ("------------------------------------------")#Loop back to "loop = 1"loop = loop + 1