Calculate Square Root
0 likes • Nov 18, 2022
Python
Loading...
More Python Posts
from collections import defaultdictdef combine_values(*dicts):res = defaultdict(list)for d in dicts:for key in d:res[key].append(d[key])return dict(res)d1 = {'a': 1, 'b': 'foo', 'c': 400}d2 = {'a': 3, 'b': 200, 'd': 400}combine_values(d1, d2) # {'a': [1, 3], 'b': ['foo', 200], 'c': [400], 'd': [400]}
# @return a list of strings, [s1, s2]def letterCombinations(self, digits):if '' == digits: return []kvmaps = {'2': 'abc','3': 'def','4': 'ghi','5': 'jkl','6': 'mno','7': 'pqrs','8': 'tuv','9': 'wxyz'}return reduce(lambda acc, digit: [x + y for x in acc for y in kvmaps[digit]], digits, [''])
from collections import defaultdictdef collect_dictionary(obj):inv_obj = defaultdict(list)for key, value in obj.items():inv_obj[value].append(key)return dict(inv_obj)ages = {'Peter': 10,'Isabel': 10,'Anna': 9,}collect_dictionary(ages) # { 10: ['Peter', 'Isabel'], 9: ['Anna'] }
def clamp_number(num, a, b):return max(min(num, max(a, b)), min(a, b))clamp_number(2, 3, 5) # 3clamp_number(1, -1, -5) # -1
#Python program to print topological sorting of a DAGfrom collections import defaultdict#Class to represent a graphclass Graph:def __init__(self,vertices):self.graph = defaultdict(list) #dictionary containing adjacency Listself.V = vertices #No. of vertices# function to add an edge to graphdef addEdge(self,u,v):self.graph[u].append(v)# A recursive function used by topologicalSortdef topologicalSortUtil(self,v,visited,stack):# Mark the current node as visited.visited[v] = True# Recur for all the vertices adjacent to this vertexfor i in self.graph[v]:if visited[i] == False:self.topologicalSortUtil(i,visited,stack)# Push current vertex to stack which stores resultstack.insert(0,v)# The function to do Topological Sort. It uses recursive# topologicalSortUtil()def topologicalSort(self):# Mark all the vertices as not visitedvisited = [False]*self.Vstack =[]# Call the recursive helper function to store Topological# Sort starting from all vertices one by onefor i in range(self.V):if visited[i] == False:self.topologicalSortUtil(i,visited,stack)# Print contents of stackprint(stack)g= Graph(6)g.addEdge(5, 2);g.addEdge(5, 0);g.addEdge(4, 0);g.addEdge(4, 1);g.addEdge(2, 3);g.addEdge(3, 1);print("Following is a Topological Sort of the given graph")g.topologicalSort()
# Python code to demonstrate# method to remove i'th character# Naive Method# Initializing Stringtest_str = "CodeCatch"# Printing original stringprint ("The original string is : " + test_str)# Removing char at pos 3# using loopnew_str = ""for i in range(len(test_str)):if i != 2:new_str = new_str + test_str[i]# Printing string after removalprint ("The string after removal of i'th character : " + new_str)