Skip to main content

Calculate Square Root

Nov 18, 2022AustinLeath
Loading...

More Python Posts

Read Dataset from excel file

Oct 7, 2022KETRICK

0 likes • 0 views

import pandas as pd
x = pd.read_excel(FILE_NAME)
print(x)

get LDAP user

Nov 18, 2022AustinLeath

0 likes • 0 views

def get_ldap_user(member_cn, user, passwrd):
'''
Get an LDAP user and return the SAMAccountName
'''
#---- Setting up the Connection
#account used for binding - Avoid putting these in version control
bindDN = str(user) + "@unt.ad.unt.edu"
bindPass = passwrd
#set some tuneables for the LDAP library.
ldap.set_option(ldap.OPT_X_TLS_REQUIRE_CERT, ldap.OPT_X_TLS_ALLOW)
#ldap.set_option(ldap.OPT_X_TLS_CACERTFILE, CACERTFILE)
conn = ldap.initialize('ldaps://unt.ad.unt.edu')
conn.protocol_version = 3
conn.set_option(ldap.OPT_REFERRALS, 0)
#authenticate the connection so that you can make additional queries
try:
result = conn.simple_bind_s(bindDN, bindPass)
except ldap.INVALID_CREDENTIALS:
result = "Invalid credentials for %s" % user
sys.exit()
#build query in the form of (uid=user)
ldap_query = '(|(displayName=' + member_cn + ')(cn='+ member_cn + ')(name=' + member_cn + '))'
ldap_info = conn.search_s('DC=unt,DC=ad,DC=unt,DC=edu', ldap.SCOPE_SUBTREE, filterstr=ldap_query)
sAMAccountName = str(ldap_info[0][1]['sAMAccountName']).replace("[b'", "").replace("']","")
return sAMAccountName

Untitled

Jun 26, 2025AustinLeath

0 likes • 4 views

def parse_ike_proposal(proposal):
"""
Parse an IKE or ESP proposal string to extract encryption, hash, and DH group in human-readable format.
Args:
proposal (str): IKE or ESP proposal string, e.g., 'IKE:AES_CBC_128/HMAC_SHA1_96/PRF_HMAC_SHA1/MODP_1024'
or 'IKE:AES_GCM_16_256/PRF_HMAC_SHA2_256/ECP_384' or 'ESP:AES_CBC_256/HMAC_SHA1_96/NO_EXT_SEQ'
Returns:
dict: Dictionary with encryption, hash, and DH group in human-readable format
"""
dh_mapping = {
# Standard MODP groups from RFC 2409 and RFC 3526
'MODP_768': '1', # 768-bit MODP group
'MODP_1024': '2', # 1024-bit MODP group
'MODP_1536': '5', # 1536-bit MODP group
'MODP_2048': '14', # 2048-bit MODP group
'MODP_3072': '15', # 3072-bit MODP group
'MODP_4096': '16', # 4096-bit MODP group
'MODP_6144': '17', # 6144-bit MODP group
'MODP_8192': '18', # 8192-bit MODP group
# Elliptic Curve groups from RFC 5114 and RFC 5903
'ECP_256': '19', # 256-bit ECP group
'ECP_384': '20', # 384-bit ECP group
'ECP_521': '21', # 521-bit ECP group
'ECP_192': '25', # 192-bit ECP group
'ECP_224': '26', # 224-bit ECP group
# MODP groups with subgroup sizes from RFC 5114
'MODP_1024_160': '22', # 1024-bit MODP with 160-bit subgroup
'MODP_2048_224': '23', # 2048-bit MODP with 224-bit subgroup
'MODP_2048_256': '24', # 2048-bit MODP with 256-bit subgroup
# Additional groups from RFC 7919 (FFDHE - Finite Field Diffie-Hellman Ephemeral)
'FFDHE_2048': '256', # 2048-bit FFDHE group
'FFDHE_3072': '257', # 3072-bit FFDHE group
'FFDHE_4096': '258', # 4096-bit FFDHE group
'FFDHE_6144': '259', # 6144-bit FFDHE group
'FFDHE_8192': '260', # 8192-bit FFDHE group
# Brainpool curves from RFC 6954
'BRAINPOOL_P256R1': '28', # 256-bit Brainpool curve
'BRAINPOOL_P384R1': '29', # 384-bit Brainpool curve
'BRAINPOOL_P512R1': '30', # 512-bit Brainpool curve
# Modern elliptic curve groups from RFC 8031
'CURVE25519': '31', # 256-bit elliptic curve (Curve25519, 128-bit security)
'CURVE448': '32', # 448-bit elliptic curve (Curve448, 224-bit security)
}
enc_mapping = {
# AES in CBC mode (RFC 3602, commonly used in IPsec and TLS)
'AES_CBC_128': 'AES-128', # 128-bit key, CBC mode
'AES_CBC_192': 'AES-192', # 192-bit key, CBC mode
'AES_CBC_256': 'AES-256', # 256-bit key, CBC mode
# AES in GCM mode (RFC 4106, authenticated encryption for IPsec/TLS)
'AES_GCM_16_128': 'AES-GCM-128', # 128-bit key, GCM mode, 16-byte ICV
'AES_GCM_16_192': 'AES-GCM-192', # 192-bit key, GCM mode, 16-byte ICV
'AES_GCM_16_256': 'AES-GCM-256', # 256-bit key, GCM mode, 16-byte ICV
'AES_GCM_8_128': 'AES-GCM-128-8', # 128-bit key, GCM mode, 8-byte ICV
'AES_GCM_8_256': 'AES-GCM-256-8', # 256-bit key, GCM mode, 8-byte ICV
'AES_GCM_12_128': 'AES-GCM-128-12', # 128-bit key, GCM mode, 12-byte ICV
'AES_GCM_12_256': 'AES-GCM-256-12', # 256-bit key, GCM mode, 12-byte ICV
# AES in CCM mode (RFC 4309, used in IPsec and some wireless protocols)
'AES_CCM_16_128': 'AES-CCM-128', # 128-bit key, CCM mode, 16-byte ICV
'AES_CCM_16_256': 'AES-CCM-256', # 256-bit key, CCM mode, 16-byte ICV
# AES in CTR mode (RFC 3686, used in some VPNs and SSH)
'AES_CTR_128': 'AES-CTR-128', # 128-bit key, CTR mode
'AES_CTR_192': 'AES-CTR-192', # 192-bit key, CTR mode
'AES_CTR_256': 'AES-CTR-256', # 256-bit key, CTR mode
# Legacy and alternative algorithms
'3DES_CBC': '3DES', # Triple DES, CBC mode (RFC 2451, deprecated)
'DES_CBC': 'DES', # Single DES, CBC mode (RFC 2405, obsolete)
'CAMELLIA_CBC_128': 'CAMELLIA-128', # 128-bit Camellia, CBC mode (RFC 5529)
'CAMELLIA_CBC_256': 'CAMELLIA-256', # 256-bit Camellia, CBC mode (RFC 5529)
'CHACHA20_POLY1305': 'CHACHA20-POLY1305', # ChaCha20 with Poly1305 (RFC 8032, used in TLS 1.3, OpenVPN)
'BLOWFISH_CBC': 'BLOWFISH', # Blowfish, CBC mode (non-standard, used in some OpenSSH/OpenVPN)
'CAST5_CBC': 'CAST5', # CAST-128, CBC mode (non-standard, used in some OpenVPN)
# Null encryption (for testing or integrity-only scenarios, RFC 2410)
'NULL': 'NULL' # No encryption, only integrity protection
}
hash_mapping = {
# Legacy hash algorithms (RFC 2403, RFC 2404, deprecated in modern systems)
'HMAC_MD5': 'MD5', # MD5 HMAC, 128-bit output (insecure, legacy use in IPsec/SSH)
'HMAC_MD5_96': 'MD5-96', # MD5 HMAC, truncated to 96 bits (IPsec)
'HMAC_SHA1': 'SHA1', # SHA1 HMAC, 160-bit output (legacy, used in IPsec/TLS)
'HMAC_SHA1_96': 'SHA1-96', # SHA1 HMAC, truncated to 96 bits (IPsec)
# SHA2-based HMAC algorithms (RFC 4868, used in IPsec, TLS, SSH)
'HMAC_SHA2_256': 'SHA2-256', # SHA2-256 HMAC, full 256-bit output
'HMAC_SHA2_256_128': 'SHA2-256-128', # SHA2-256 HMAC, truncated to 128 bits
'HMAC_SHA2_384': 'SHA2-384', # SHA2-384 HMAC, full 384-bit output
'HMAC_SHA2_384_192': 'SHA2-384-192', # SHA2-384 HMAC, truncated to 192 bits
'HMAC_SHA2_512': 'SHA2-512', # SHA2-512 HMAC, full 512-bit output
'HMAC_SHA2_512_256': 'SHA2-512-256', # SHA2-512 HMAC, truncated to 256 bits
# SHA3-based HMAC algorithms (RFC 8009, emerging in modern protocols)
'HMAC_SHA3_224': 'SHA3-224', # SHA3-224 HMAC, 224-bit output
'HMAC_SHA3_256': 'SHA3-256', # SHA3-256 HMAC, 256-bit output
'HMAC_SHA3_384': 'SHA3-384', # SHA3-384 HMAC, 384-bit output
'HMAC_SHA3_512': 'SHA3-512', # SHA3-512 HMAC, 512-bit output
# Authenticated encryption integrity (used with AES-GCM/CCM, RFC 4106, RFC 4309)
'AES_GMAC_128': 'GMAC-128', # AES-GMAC with 128-bit key
'AES_GMAC_192': 'GMAC-192', # AES-GMAC with 192-bit key
'AES_GMAC_256': 'GMAC-256', # AES-GMAC with 256-bit key
# Poly1305 (RFC 8032, used with ChaCha20 in TLS 1.3, OpenVPN)
'POLY1305': 'POLY1305', # Poly1305 authenticator, 128-bit output
# Null authentication (RFC 2410, for testing or encryption-only scenarios)
'NONE': 'NULL' # No integrity protection
}
# Split the proposal into components
components = proposal.split('/')
# Initialize result dictionary
result = {
'encryption': 'Unknown',
'hash': 'None', # Default to 'None' for AEAD ciphers like AES-GCM
'dh_group': 'None' # Default to 'None' for ESP or proposals without DH
}
# Extract components based on expected length
if len(components) == 4: # Standard IKE format: IKE:ENC/HASH/PRF/DH
result['encryption'] = enc_mapping.get(components[0].replace('IKE:', ''), 'Unknown')
result['hash'] = hash_mapping.get(components[1], 'Unknown')
result['dh_group'] = dh_mapping.get(components[3], 'None')
elif len(components) == 3: # AEAD IKE format: IKE:ENC/PRF/DH or ESP:ENC/HASH/EXT
result['encryption'] = enc_mapping.get(components[0].replace('IKE:', '').replace('ESP:', ''), 'Unknown')
if components[0].startswith('IKE:') and components[1].startswith('PRF_'): # AEAD IKE (e.g., AES-GCM)
result['hash'] = 'None'
result['dh_group'] = dh_mapping.get(components[2], 'None')
else: # ESP format (e.g., ESP:AES_CBC_256/HMAC_SHA1_96/NO_EXT_SEQ)
result['hash'] = hash_mapping.get(components[1], 'Unknown')
result['dh_group'] = 'None' # ESP proposals typically lack DH groups
return result
def process_proposals(proposal_list):
"""
Process a list of IKE or ESP proposals, grouping by encryption and hash, and listing all DH groups.
Args:
proposal_list (str): Comma-separated string of IKE or ESP proposals
Returns:
dict: Dictionary mapping (encryption, hash) tuples to lists of DH groups
"""
#print("PROPSOSAL LIST:", proposal_list)
proposals = proposal_list.split(', ')
grouped_proposals = {}
for proposal in proposals:
parsed = parse_ike_proposal(proposal.strip())
key = (parsed['encryption'], parsed['hash'])
dh_group = parsed['dh_group']
if key not in grouped_proposals:
grouped_proposals[key] = []
if dh_group != 'None' and dh_group not in grouped_proposals[key]:
grouped_proposals[key].append(dh_group)
# Sort DH groups for consistency (numerically by group number)
for key in grouped_proposals:
grouped_proposals[key].sort(key=lambda x: int(x))
# Format output as strings
result = []
for (enc, hash_val), dh_groups in grouped_proposals.items():
hash_part = f" Hash {hash_val}" if hash_val != 'None' else ""
dh_group_part = f" DH Group(s) {' '.join(dh_groups)}" if dh_groups else " DH Group(s) None"
result.append(f"Encryption {enc}{hash_part}{dh_group_part}")
return result
# Example usage
if __name__ == "__main__":
proposals = """IKE:AES_CBC_128/HMAC_SHA1_96/PRF_HMAC_SHA1/MODP_1024, IKE:AES_CBC_128/HMAC_SHA1_96/PRF_HMAC_SHA1/MODP_2048, IKE:AES_CBC_128/HMAC_SHA1_96/PRF_HMAC_SHA1/MODP_3072, IKE:AES_CBC_128/HMAC_SHA1_96/PRF_HMAC_SHA1/MODP_4096, IKE:AES_CBC_128/HMAC_SHA1_96/PRF_HMAC_SHA1/MODP_6144, IKE:AES_CBC_128/HMAC_SHA1_96/PRF_HMAC_SHA1/MODP_8192, IKE:AES_CBC_128/HMAC_SHA1_96/PRF_HMAC_SHA1/ECP_256, IKE:AES_CBC_128/HMAC_SHA1_96/PRF_HMAC_SHA1/ECP_384, IKE:AES_CBC_128/HMAC_SHA1_96/PRF_HMAC_SHA1/ECP_521, IKE:AES_CBC_128/HMAC_SHA1_96/PRF_HMAC_SHA1/MODP_1024_160, IKE:AES_CBC_128/HMAC_SHA1_96/PRF_HMAC_SHA1/MODP_2048_224, IKE:AES_CBC_128/HMAC_SHA1_96/PRF_HMAC_SHA1/MODP_2048_256, IKE:AES_CBC_128/HMAC_SHA2_256_128/PRF_HMAC_SHA2_256/MODP_1024, IKE:AES_CBC_128/HMAC_SHA2_256_128/PRF_HMAC_SHA2_256/MODP_2048, IKE:AES_CBC_128/HMAC_SHA2_256_128/PRF_HMAC_SHA2_256/MODP_3072, IKE:AES_CBC_128/HMAC_SHA2_256_128/PRF_HMAC_SHA2_256/MODP_4096, IKE:AES_CBC_128/HMAC_SHA2_256_128/PRF_HMAC_SHA2_256/MODP_6144, IKE:AES_CBC_128/HMAC_SHA2_256_128/PRF_HMAC_SHA2_256/MODP_8192, IKE:AES_CBC_128/HMAC_SHA2_256_128/PRF_HMAC_SHA2_256/ECP_256, IKE:AES_CBC_128/HMAC_SHA2_256_128/PRF_HMAC_SHA2_256/ECP_384, IKE:AES_CBC_128/HMAC_SHA2_256_128/PRF_HMAC_SHA2_256/ECP_521, IKE:AES_CBC_128/HMAC_SHA2_256_128/PRF_HMAC_SHA2_256/MODP_1024_160, IKE:AES_CBC_128/HMAC_SHA2_256_128/PRF_HMAC_SHA2_256/MODP_2048_224, IKE:AES_CBC_128/HMAC_SHA2_256_128/PRF_HMAC_SHA2_256/MODP_2048_256, IKE:AES_CBC_128/HMAC_SHA2_384_192/PRF_HMAC_SHA2_384/MODP_1024, IKE:AES_CBC_128/HMAC_SHA2_384_192/PRF_HMAC_SHA2_384/MODP_2048, IKE:AES_CBC_128/HMAC_SHA2_384_192/PRF_HMAC_SHA2_384/MODP_3072, IKE:AES_CBC_128/HMAC_SHA2_384_192/PRF_HMAC_SHA2_384/MODP_4096, IKE:AES_CBC_128/HMAC_SHA2_384_192/PRF_HMAC_SHA2_384/MODP_6144, IKE:AES_CBC_128/HMAC_SHA2_384_192/PRF_HMAC_SHA2_384/MODP_8192, IKE:AES_CBC_128/HMAC_SHA2_384_192/PRF_HMAC_SHA2_384/ECP_256, IKE:AES_CBC_128/HMAC_SHA2_384_192/PRF_HMAC_SHA2_384/ECP_384, IKE:AES_CBC_128/HMAC_SHA2_384_192/PRF_HMAC_SHA2_384/ECP_521, IKE:AES_CBC_128/HMAC_SHA2_384_192/PRF_HMAC_SHA2_384/MODP_1024_160, IKE:AES_CBC_128/HMAC_SHA2_384_192/PRF_HMAC_SHA2_384/MODP_2048_224, IKE:AES_CBC_128/HMAC_SHA2_384_192/PRF_HMAC_SHA2_384/MODP_2048_256, IKE:AES_CBC_128/HMAC_SHA2_512_256/PRF_HMAC_SHA2_512/MODP_1024, IKE:AES_CBC_128/HMAC_SHA2_512_256/PRF_HMAC_SHA2_512/MODP_2048, IKE:AES_CBC_128/HMAC_SHA2_512_256/PRF_HMAC_SHA2_512/MODP_3072, IKE:AES_CBC_128/HMAC_SHA2_512_256/PRF_HMAC_SHA2_512/MODP_4096, IKE:AES_CBC_128/HMAC_SHA2_512_256/PRF_HMAC_SHA2_512/MODP_6144, IKE:AES_CBC_128/HMAC_SHA2_512_256/PRF_HMAC_SHA2_512/MODP_8192, IKE:AES_CBC_128/HMAC_SHA2_512_256/PRF_HMAC_SHA2_512/ECP_256, IKE:AES_CBC_128/HMAC_SHA2_512_256/PRF_HMAC_SHA2_512/ECP_384, IKE:AES_CBC_128/HMAC_SHA2_512_256/PRF_HMAC_SHA2_512/ECP_521, IKE:AES_CBC_128/HMAC_SHA2_512_256/PRF_HMAC_SHA2_512/MODP_1024_160, IKE:AES_CBC_128/HMAC_SHA2_512_256/PRF_HMAC_SHA2_512/MODP_2048_224, IKE:AES_CBC_128/HMAC_SHA2_512_256/PRF_HMAC_SHA2_512/MODP_2048_256, IKE:AES_CBC_256/HMAC_SHA1_96/PRF_HMAC_SHA1/MODP_1024, IKE:AES_CBC_256/HMAC_SHA1_96/PRF_HMAC_SHA1/MODP_2048, IKE:AES_CBC_256/HMAC_SHA1_96/PRF_HMAC_SHA1/MODP_3072, IKE:AES_CBC_256/HMAC_SHA1_96/PRF_HMAC_SHA1/MODP_4096, IKE:AES_CBC_256/HMAC_SHA1_96/PRF_HMAC_SHA1/MODP_6144, IKE:AES_CBC_256/HMAC_SHA1_96/PRF_HMAC_SHA1/MODP_8192, IKE:AES_CBC_256/HMAC_SHA1_96/PRF_HMAC_SHA1/ECP_256, IKE:AES_CBC_256/HMAC_SHA1_96/PRF_HMAC_SHA1/ECP_384, IKE:AES_CBC_256/HMAC_SHA1_96/PRF_HMAC_SHA1/ECP_521, IKE:AES_CBC_256/HMAC_SHA1_96/PRF_HMAC_SHA1/MODP_1024_160, IKE:AES_CBC_256/HMAC_SHA1_96/PRF_HMAC_SHA1/MODP_2048_224, IKE:AES_CBC_256/HMAC_SHA1_96/PRF_HMAC_SHA1/MODP_2048_256, IKE:AES_CBC_256/HMAC_SHA2_256_128/PRF_HMAC_SHA2_256/MODP_1024, IKE:AES_CBC_256/HMAC_SHA2_256_128/PRF_HMAC_SHA2_256/MODP_2048, IKE:AES_CBC_256/HMAC_SHA2_256_128/PRF_HMAC_SHA2_256/MODP_3072, IKE:AES_CBC_256/HMAC_SHA2_256_128/PRF_HMAC_SHA2_256/MODP_4096, IKE:AES_CBC_256/HMAC_SHA2_256_128/PRF_HMAC_SHA2_256/MODP_6144, IKE:AES_CBC_256/HMAC_SHA2_256_128/PRF_HMAC_SHA2_256/MODP_8192, IKE:AES_CBC_256/HMAC_SHA2_256_128/PRF_HMAC_SHA2_256/ECP_256, IKE:AES_CBC_256/HMAC_SHA2_256_128/PRF_HMAC_SHA2_256/ECP_384, IKE:AES_CBC_256/HMAC_SHA2_256_128/PRF_HMAC_SHA2_256/ECP_521, IKE:AES_CBC_256/HMAC_SHA2_256_128/PRF_HMAC_SHA2_256/MODP_1024_160, IKE:AES_CBC_256/HMAC_SHA2_256_128/PRF_HMAC_SHA2_256/MODP_2048_224, IKE:AES_CBC_256/HMAC_SHA2_256_128/PRF_HMAC_SHA2_256/MODP_2048_256, IKE:AES_CBC_256/HMAC_SHA2_384_192/PRF_HMAC_SHA2_384/MODP_1024, IKE:AES_CBC_256/HMAC_SHA2_384_192/PRF_HMAC_SHA2_384/MODP_2048, IKE:AES_CBC_256/HMAC_SHA2_384_192/PRF_HMAC_SHA2_384/MODP_3072, IKE:AES_CBC_256/HMAC_SHA2_384_192/PRF_HMAC_SHA2_384/MODP_4096, IKE:AES_CBC_256/HMAC_SHA2_384_192/PRF_HMAC_SHA2_384/MODP_6144, IKE:AES_CBC_256/HMAC_SHA2_384_192/PRF_HMAC_SHA2_384/MODP_8192, IKE:AES_CBC_256/HMAC_SHA2_384_192/PRF_HMAC_SHA2_384/ECP_256, IKE:AES_CBC_256/HMAC_SHA2_384_192/PRF_HMAC_SHA2_384/ECP_384, IKE:AES_CBC_256/HMAC_SHA2_384_192/PRF_HMAC_SHA2_384/ECP_521, IKE:AES_CBC_256/HMAC_SHA2_384_192/PRF_HMAC_SHA2_384/MODP_1024_160, IKE:AES_CBC_256/HMAC_SHA2_384_192/PRF_HMAC_SHA2_384/MODP_2048_224, IKE:AES_CBC_256/HMAC_SHA2_384_192/PRF_HMAC_SHA2_384/MODP_2048_256, IKE:AES_CBC_256/HMAC_SHA2_512_256/PRF_HMAC_SHA2_512/MODP_1024, IKE:AES_CBC_256/HMAC_SHA2_512_256/PRF_HMAC_SHA2_512/MODP_2048, IKE:AES_CBC_256/HMAC_SHA2_512_256/PRF_HMAC_SHA2_512/MODP_3072, IKE:AES_CBC_256/HMAC_SHA2_512_256/PRF_HMAC_SHA2_512/MODP_4096, IKE:AES_CBC_256/HMAC_SHA2_512_256/PRF_HMAC_SHA2_512/MODP_6144, IKE:AES_CBC_256/HMAC_SHA2_512_256/PRF_HMAC_SHA2_512/MODP_8192, IKE:AES_CBC_256/HMAC_SHA2_512_256/PRF_HMAC_SHA2_512/ECP_256, IKE:AES_CBC_256/HMAC_SHA2_512_256/PRF_HMAC_SHA2_512/ECP_384, IKE:AES_CBC_256/HMAC_SHA2_512_256/PRF_HMAC_SHA2_512/ECP_521, IKE:AES_CBC_256/HMAC_SHA2_512_256/PRF_HMAC_SHA2_512/MODP_1024_160, IKE:AES_CBC_256/HMAC_SHA2_512_256/PRF_HMAC_SHA2_512/MODP_2048_224, IKE:AES_CBC_256/HMAC_SHA2_512_256/PRF_HMAC_SHA2_512/MODP_2048_256"""
proposals_result = '\n'.join(process_proposals(proposals))
print(f"AWS tunnel is processing proposals to find a matching configuration. AWS tunnel is configured as follows:\n\n{proposals_result}")

key of minimum value

Nov 19, 2022CodeCatch

0 likes • 0 views

def key_of_min(d):
return min(d, key = d.get)
key_of_min({'a':4, 'b':0, 'c':13}) # b

Factorial of N

Nov 19, 2022CodeCatch

0 likes • 0 views

import math
def factorial(n):
print(math.factorial(n))
return (math.factorial(n))
factorial(5)
factorial(10)
factorial(15)

Size of tuple

Nov 19, 2022CodeCatch

0 likes • 3 views

import sys
# sample Tuples
Tuple1 = ("A", 1, "B", 2, "C", 3)
Tuple2 = ("Geek1", "Raju", "Geek2", "Nikhil", "Geek3", "Deepanshu")
Tuple3 = ((1, "Lion"), ( 2, "Tiger"), (3, "Fox"), (4, "Wolf"))
# print the sizes of sample Tuples
print("Size of Tuple1: " + str(sys.getsizeof(Tuple1)) + "bytes")
print("Size of Tuple2: " + str(sys.getsizeof(Tuple2)) + "bytes")
print("Size of Tuple3: " + str(sys.getsizeof(Tuple3)) + "bytes")