• Oct 7, 2022 •KETRICK
0 likes • 1 view
import pandas as pd x = pd.read_excel(FILE_NAME) print(x)
• Nov 18, 2022 •AustinLeath
# List lst = [1, 2, 3, 'Alice', 'Alice'] # One-Liner indices = [i for i in range(len(lst)) if lst[i]=='Alice'] # Result print(indices) # [3, 4]
• Feb 23, 2025 •hasnaoui1
0 likes • 8 views
print("hello world")
• May 31, 2023 •CodeCatch
0 likes • 0 views
# Function to check Armstrong number def is_armstrong_number(number): # Convert number to string to iterate over its digits num_str = str(number) # Calculate the sum of the cubes of each digit digit_sum = sum(int(digit) ** len(num_str) for digit in num_str) # Compare the sum with the original number if digit_sum == number: return True else: return False # Prompt user for a number number = int(input("Enter a number: ")) # Check if the number is an Armstrong number if is_armstrong_number(number): print(number, "is an Armstrong number.") else: print(number, "is not an Armstrong number.")
• Nov 19, 2022 •CodeCatch
# Python program for implementation of Selection # Sort import sys A = [64, 25, 12, 22, 11] # Traverse through all array elements for i in range(len(A)): # Find the minimum element in remaining # unsorted array min_idx = i for j in range(i+1, len(A)): if A[min_idx] > A[j]: min_idx = j # Swap the found minimum element with # the first element A[i], A[min_idx] = A[min_idx], A[i] # Driver code to test above print ("Sorted array") for i in range(len(A)): print("%d" %A[i]),
# Given a number n, print all primes smaller than or equal to n. It is also given that n is a small number. # For example, if n is 10, the output should be “2, 3, 5, 7”. If n is 20, the output should be “2, 3, 5, 7, 11, 13, 17, 19”. # Python program to print all primes smaller than or equal to # n using Sieve of Eratosthenes def SieveOfEratosthenes(n): # Create a boolean array "prime[0..n]" and initialize # all entries it as true. A value in prime[i] will # finally be false if i is Not a prime, else true. prime = [True for i in range(n + 1)] p = 2 while (p * p <= n): # If prime[p] is not changed, then it is a prime if (prime[p] == True): # Update all multiples of p for i in range(p * 2, n + 1, p): prime[i] = False p += 1 prime[0]= False prime[1]= False # Print all prime numbers for p in range(n + 1): if prime[p]: print (p) # driver program if __name__=='__main__': n = 30 print("Following are the prime numbers smaller") print("than or equal to ", n) print("than or equal to ", n) SieveOfEratosthenes(n)