Skip to main content

Multiply Two Matrices

0 likes • May 31, 2023 • 0 views
Python
Loading...

More Python Posts

delay time lambda

0 likes • Nov 19, 2022 • 0 views
Python
from time import sleep
def delay(fn, ms, *args):
sleep(ms / 1000)
return fn(*args)
delay(lambda x: print(x), 1000, 'later') # prints 'later' after one second

Radix sort

0 likes • Nov 19, 2022 • 1 view
Python
# Python program for implementation of Radix Sort
# A function to do counting sort of arr[] according to
# the digit represented by exp.
def countingSort(arr, exp1):
n = len(arr)
# The output array elements that will have sorted arr
output = [0] * (n)
# initialize count array as 0
count = [0] * (10)
# Store count of occurrences in count[]
for i in range(0, n):
index = (arr[i]/exp1)
count[int((index)%10)] += 1
# Change count[i] so that count[i] now contains actual
# position of this digit in output array
for i in range(1,10):
count[i] += count[i-1]
# Build the output array
i = n-1
while i>=0:
index = (arr[i]/exp1)
output[ count[ int((index)%10) ] - 1] = arr[i]
count[int((index)%10)] -= 1
i -= 1
# Copying the output array to arr[],
# so that arr now contains sorted numbers
i = 0
for i in range(0,len(arr)):
arr[i] = output[i]
# Method to do Radix Sort
def radixSort(arr):
# Find the maximum number to know number of digits
max1 = max(arr)
# Do counting sort for every digit. Note that instead
# of passing digit number, exp is passed. exp is 10^i
# where i is current digit number
exp = 1
while max1/exp > 0:
countingSort(arr,exp)
exp *= 10
# Driver code to test above
arr = [ 170, 45, 75, 90, 802, 24, 2, 66]
radixSort(arr)
for i in range(len(arr)):
print(arr[i]),

find parity outliers

0 likes • Nov 19, 2022 • 0 views
Python
from collections import Counter
def find_parity_outliers(nums):
return [
x for x in nums
if x % 2 != Counter([n % 2 for n in nums]).most_common()[0][0]
]
find_parity_outliers([1, 2, 3, 4, 6]) # [1, 3]

UNT CSCE 2100 Assignment 6

0 likes • Nov 18, 2022 • 0 views
Python
"""
Assignment 6
The goal is to make a graph of
who bit who and who was bitten.
There should be 10 nodes and 15 edges.
3 arrows of biting each other and
3 arrows of someone biting themselves.
Networkx can not do self biting
arrows, but it is in the code.
"""
from graphviz import Digraph as DDotGraph
from graphviz import Graph as UDotGraph
import networkx as nx
from networkx.algorithms.dag import transitive_closure
import graphviz as gv
import matplotlib.pyplot as plt
import numpy as np
from numpy.linalg import matrix_power
"""
class DGraph:
def __init__(self):
self.d = dict()
def clear(self):
self.d = dict()
def add_node(self,n):
if not self.d.get(n):
self.d[n] = set()
def add_edge(self,e):
f,t=e
self.add_node(f)
self.add_node(t)
vs=self.d.get(f)
if not vs:
self.d[f] = {t}
else:
vs.add(t)
def add_edges_from(self,es):
for e in es:
self.add_edge(e)
def edges(self):
for f in self.d:
for t in self.d[f]:
yield (f,t)
def number_of_nodes(self):
return len(self.d)
def __repr__(self):
return self.d.__repr__()
def show(self):
dot = gv.Digraph()
for e in self.edges():
#print(e)
f, t = e
dot.edge(str(f), str(t), label='')
#print(dot.source)
show(dot)
# displays graph with graphviz
def show(dot, show=True, file_name='graph.gv'):
dot.render(file_name, view=show)
def showGraph(g,label="",directed=True):
if directed:
dot = gv.Digraph()
else:
dot = gv.Graph()
for e in g.edges():
print(e)
f, t = e
dot.edge(str(f), str(t), label=label)
print(dot.source)
show(dot)
def bit():
G = DGraph()
G.add_edge(("Blade","Samara"))
G.add_edge(("Shadow","Wolfe"))
G.add_edge(("Raven", "Austin"))
G.add_edge(("Blade", "Alice"))
G.add_edge(("Alice","Brandon"))
G.add_edge(("Blade", "Wolfe"))
G.add_edge(("Samara", "Robin"))
G.add_edge(("Samara", "Raven"))
G.add_edge(("Samara", "Hamed"))
G.add_edge(("Wolfe", "Blade"))
G.add_edge(("Hamed", "Samara"))
G.add_edge(("Wolfe", "Shadow"))
G.add_edge(("Brandon", "Brandon"))
G.add_edge(("Hamed", "Hamed"))
G.add_edge(("Austin", "Austin"))
showGraph(G, label="bit")
bit()
def bitten():
G=DGraph()
G.add_edge(("Samara","Blade"))
G.add_edge(("Wolfe","Shadow"))
G.add_edge(("Austin", "Raven"))
G.add_edge(("Alice","Blade"))
G.add_edge(("Brandon", "Alice"))
G.add_edge(("Wolfe", "Blade" ))
G.add_edge(("Robin", "Samara"))
G.add_edge(("Raven", "Samara"))
G.add_edge(("Hamed", "Samara"))
G.add_edge(("Blade", "Wolfe"))
G.add_edge(("Samara", "Hamed"))
G.add_edge(("Shadow", "Wolfe"))
G.add_edge(("Brandon", "Brandon"))
G.add_edge(("Hamed", "Hamed"))
G.add_edge(("Austin", "Austin"))
showGraph(G, label="bitten by")
#bitten()
family = ["Blade", "Samara", "Shadow", "Wolfe", "Raven", "Alice"]
"""
#Do transitive closure call out and the
#matrix power operation should be the same
D = nx.DiGraph()
#D.add_nodes_from("SamaraBladeWolfeShadowAliceRavenBrandonRobinHamedAustin")
D.add_edge("Blade","Samara")
D.add_edge("Shadow","Wolfe")
D.add_edge("Raven", "Austin")
D.add_edge("Blade", "Alice")
D.add_edge("Alice","Brandon")
D.add_edge("Blade", "Wolfe")
D.add_edge("Samara", "Robin")
D.add_edge("Samara", "Raven")
D.add_edge("Samara", "Hamed")
D.add_edge("Wolfe", "Blade")
D.add_edge("Hamed", "Samara")
D.add_edge("Wolfe", "Shadow")
D.add_edge("Brandon", "Brandon")
D.add_edge("Hamed", "Hamed")
D.add_edge("Austin", "Austin")
T = transitive_closure(D)
for e in D.edges(): print(e)
for n in D.nodes(): print(n)
def show(H):
nx.draw(H, with_labels=True, font_weight='bold')
plt.show()
#Use nx.to_numpy_matrix instead of nx.adjacency_matrix
# M = nx.adjacency_matrix(D)
# MT = nx.adjacency_matrix(T)
M = nx.to_numpy_matrix(D)
MT = nx.to_numpy_matrix(T)
M2 = M@M
def mPower(M, k): #M is numpy matrix
assert k >= 1
P = M
for _ in range(k):
P = P @ M
return P
def tc(M):
#compute transitive closure
pass
D1 = nx.DiGraph(M)
D2 = nx.DiGraph(M2)
print('Matrix for Original\n', M)
N = nx.to_numpy_array(D,dtype=int)
print('np_array for Original\n', N)
print('\nMatrix for Transitive Closure\n', MT)
N2 = nx.to_numpy_array(T,dtype=int)
print('np_array for Transitive Closure\n', N2)
show(D) #can use D, T, and numpy matrix power operation
show(T)
show(T)

Read Dataset from excel file

0 likes • Oct 7, 2022 • 0 views
Python
import pandas as pd
x = pd.read_excel(FILE_NAME)
print(x)

sum of powers

0 likes • Nov 19, 2022 • 0 views
Python
def sum_of_powers(end, power = 2, start = 1):
return sum([(i) ** power for i in range(start, end + 1)])
sum_of_powers(10) # 385
sum_of_powers(10, 3) # 3025
sum_of_powers(10, 3, 5) # 2925