Skip to main content
Loading...

More Python Posts

""" Number Guessing Game
----------------------------------------
"""
import random
attempts_list = []
def show_score():
    if len(attempts_list) <= 0:
        print("There is currently no high score, it's yours for the taking!")
    else:
        print("The current high score is {} attempts".format(min(attempts_list)))
def start_game():
    random_number = int(random.randint(1, 10))
    print("Hello traveler! Welcome to the game of guesses!")
    player_name = input("What is your name? ")
    wanna_play = input("Hi, {}, would you like to play the guessing game? (Enter Yes/No) ".format(player_name))
    // Where the show_score function USED to be
    attempts = 0
    show_score()
    while wanna_play.lower() == "yes":
        try:
            guess = input("Pick a number between 1 and 10 ")
            if int(guess) < 1 or int(guess) > 10:
                raise ValueError("Please guess a number within the given range")
            if int(guess) == random_number:
                print("Nice! You got it!")
                attempts += 1
                attempts_list.append(attempts)
                print("It took you {} attempts".format(attempts))
                play_again = input("Would you like to play again? (Enter Yes/No) ")
                attempts = 0
                show_score()
                random_number = int(random.randint(1, 10))
                if play_again.lower() == "no":
                    print("That's cool, have a good one!")
                    break
            elif int(guess) > random_number:
                print("It's lower")
                attempts += 1
            elif int(guess) < random_number:
                print("It's higher")
                attempts += 1
        except ValueError as err:
            print("Oh no!, that is not a valid value. Try again...")
            print("({})".format(err))
    else:
        print("That's cool, have a good one!")
if __name__ == '__main__':
    start_game()
# Python program for Plotting Fibonacci 
# spiral fractal using Turtle 
import turtle 
import math 
  
def fiboPlot(n): 
    a = 0
    b = 1
    square_a = a 
    square_b = b 
  
    # Setting the colour of the plotting pen to blue 
    x.pencolor("blue") 
  
    # Drawing the first square 
    x.forward(b * factor) 
    x.left(90) 
    x.forward(b * factor) 
    x.left(90) 
    x.forward(b * factor) 
    x.left(90) 
    x.forward(b * factor) 
  
    # Proceeding in the Fibonacci Series 
    temp = square_b 
    square_b = square_b + square_a 
    square_a = temp 
      
    # Drawing the rest of the squares 
    for i in range(1, n): 
        x.backward(square_a * factor) 
        x.right(90) 
        x.forward(square_b * factor) 
        x.left(90) 
        x.forward(square_b * factor) 
        x.left(90) 
        x.forward(square_b * factor) 
  
        # Proceeding in the Fibonacci Series 
        temp = square_b 
        square_b = square_b + square_a 
        square_a = temp 
  
    # Bringing the pen to starting point of the spiral plot 
    x.penup() 
    x.setposition(factor, 0) 
    x.seth(0) 
    x.pendown() 
  
    # Setting the colour of the plotting pen to red 
    x.pencolor("red") 
  
    # Fibonacci Spiral Plot 
    x.left(90) 
    for i in range(n): 
        print(b) 
        fdwd = math.pi * b * factor / 2
        fdwd /= 90
        for j in range(90): 
            x.forward(fdwd) 
            x.left(1) 
        temp = a 
        a = b 
        b = temp + b 
  
  
# Here 'factor' signifies the multiplicative  
# factor which expands or shrinks the scale 
# of the plot by a certain factor. 
factor = 1
  
# Taking Input for the number of  
# Iterations our Algorithm will run 
n = int(input('Enter the number of iterations (must be > 1): ')) 
  
# Plotting the Fibonacci Spiral Fractal  
# and printing the corresponding Fibonacci Number 
if n > 0: 
    print("Fibonacci series for", n, "elements :") 
    x = turtle.Turtle() 
    x.speed(100) 
    fiboPlot(n) 
    turtle.done() 
else: 
    print("Number of iterations must be > 0")