• Sep 6, 2020 •C S
0 likes • 3 views
def Fibonacci(n): if n<0: print("Incorrect input") # First Fibonacci number is 0 elif n==1: return 0 # Second Fibonacci number is 1 elif n==2: return 1 else: return Fibonacci(n-1)+Fibonacci(n-2) # Driver Program print(Fibonacci(9))
• May 31, 2023 •CodeCatch
0 likes • 0 views
def generate_floyds_triangle(num_rows): triangle = [] number = 1 for row in range(num_rows): current_row = [] for _ in range(row + 1): current_row.append(number) number += 1 triangle.append(current_row) return triangle def display_floyds_triangle(triangle): for row in triangle: for number in row: print(number, end=" ") print() # Prompt the user for the number of rows num_rows = int(input("Enter the number of rows for Floyd's Triangle: ")) # Generate Floyd's Triangle floyds_triangle = generate_floyds_triangle(num_rows) # Display Floyd's Triangle display_floyds_triangle(floyds_triangle)
• Nov 19, 2022 •CodeCatch
# Python program for implementation of Selection # Sort import sys A = [64, 25, 12, 22, 11] # Traverse through all array elements for i in range(len(A)): # Find the minimum element in remaining # unsorted array min_idx = i for j in range(i+1, len(A)): if A[min_idx] > A[j]: min_idx = j # Swap the found minimum element with # the first element A[i], A[min_idx] = A[min_idx], A[i] # Driver code to test above print ("Sorted array") for i in range(len(A)): print("%d" %A[i]),
0 likes • 1 view
def print_x_pattern(size): i,j = 0,size - 1 while j >= 0 and i < size: initial_spaces = ' '*min(i,j) middle_spaces = ' '*(abs(i - j) - 1) final_spaces = ' '*(size - 1 - max(i,j)) if j == i: print(initial_spaces + '*' + final_spaces) else: print(initial_spaces + '*' + middle_spaces + '*' + final_spaces) i += 1 j -= 1 print_x_pattern(7)
0 likes • 7 views
def when(predicate, when_true): return lambda x: when_true(x) if predicate(x) else x double_even_numbers = when(lambda x: x % 2 == 0, lambda x : x * 2) print(double_even_numbers(2)) # 4 print(double_even_numbers(1)) # 1
0 likes • 2 views
# Python program for Plotting Fibonacci # spiral fractal using Turtle import turtle import math def fiboPlot(n): a = 0 b = 1 square_a = a square_b = b # Setting the colour of the plotting pen to blue x.pencolor("blue") # Drawing the first square x.forward(b * factor) x.left(90) x.forward(b * factor) x.left(90) x.forward(b * factor) x.left(90) x.forward(b * factor) # Proceeding in the Fibonacci Series temp = square_b square_b = square_b + square_a square_a = temp # Drawing the rest of the squares for i in range(1, n): x.backward(square_a * factor) x.right(90) x.forward(square_b * factor) x.left(90) x.forward(square_b * factor) x.left(90) x.forward(square_b * factor) # Proceeding in the Fibonacci Series temp = square_b square_b = square_b + square_a square_a = temp # Bringing the pen to starting point of the spiral plot x.penup() x.setposition(factor, 0) x.seth(0) x.pendown() # Setting the colour of the plotting pen to red x.pencolor("red") # Fibonacci Spiral Plot x.left(90) for i in range(n): print(b) fdwd = math.pi * b * factor / 2 fdwd /= 90 for j in range(90): x.forward(fdwd) x.left(1) temp = a a = b b = temp + b # Here 'factor' signifies the multiplicative # factor which expands or shrinks the scale # of the plot by a certain factor. factor = 1 # Taking Input for the number of # Iterations our Algorithm will run n = int(input('Enter the number of iterations (must be > 1): ')) # Plotting the Fibonacci Spiral Fractal # and printing the corresponding Fibonacci Number if n > 0: print("Fibonacci series for", n, "elements :") x = turtle.Turtle() x.speed(100) fiboPlot(n) turtle.done() else: print("Number of iterations must be > 0")