Skip to main content

primes numbers finder

mo_ak
0 likes • Mar 12, 2021
Python
Loading...
Download

More Python Posts

UNT CSCE 2100 Question 1

AustinLeath
0 likes • Nov 18, 2022
Python
#question1.py
def rose(n) :
if n==0 :
yield []
else :
for k in range(0,n) :
for l in rose(k) :
for r in rose(n-1-k) :
yield [l]+[r]+[r]
def start(n) :
for x in rose(n) :
print(x) #basically I am printing x for each rose(n) file
print("starting program: \n")
start(2) # here is where I call the start function

bruteforce password cracker

AustinLeath
0 likes • Nov 18, 2022
Python
import itertools
import string
import time
def guess_password(real):
chars = string.ascii_lowercase + string.ascii_uppercase + string.digits + string.punctuation
attempts = 0
for password_length in range(1, 9):
for guess in itertools.product(chars, repeat=password_length):
startTime = time.time()
attempts += 1
guess = ''.join(guess)
if guess == real:
return 'password is {}. found in {} guesses.'.format(guess, attempts)
loopTime = (time.time() - startTime);
print(guess, attempts, loopTime)
print("\nIt will take A REALLY LONG TIME to crack a long password. Try this out with a 3 or 4 letter password and see how this program works.\n")
val = input("Enter a password you want to crack that is 9 characters or below: ")
print(guess_password(val.lower()))

sum of powers

CodeCatch
0 likes • Nov 19, 2022
Python
def sum_of_powers(end, power = 2, start = 1):
return sum([(i) ** power for i in range(start, end + 1)])
sum_of_powers(10) # 385
sum_of_powers(10, 3) # 3025
sum_of_powers(10, 3, 5) # 2925

integer to roman numeral

CodeCatch
0 likes • Nov 19, 2022
Python
def to_roman_numeral(num):
lookup = [
(1000, 'M'),
(900, 'CM'),
(500, 'D'),
(400, 'CD'),
(100, 'C'),
(90, 'XC'),
(50, 'L'),
(40, 'XL'),
(10, 'X'),
(9, 'IX'),
(5, 'V'),
(4, 'IV'),
(1, 'I'),
]
res = ''
for (n, roman) in lookup:
(d, num) = divmod(num, n)
res += roman * d
return res
to_roman_numeral(3) # 'III'
to_roman_numeral(11) # 'XI'
to_roman_numeral(1998) # 'MCMXCVIII'

Sieve of Eratosthenes

CodeCatch
0 likes • Nov 19, 2022
Python
# Given a number n, print all primes smaller than or equal to n. It is also given that n is a small number.
# For example, if n is 10, the output should be “2, 3, 5, 7”. If n is 20, the output should be “2, 3, 5, 7, 11, 13, 17, 19”.
# Python program to print all primes smaller than or equal to
# n using Sieve of Eratosthenes
def SieveOfEratosthenes(n):
# Create a boolean array "prime[0..n]" and initialize
# all entries it as true. A value in prime[i] will
# finally be false if i is Not a prime, else true.
prime = [True for i in range(n + 1)]
p = 2
while (p * p <= n):
# If prime[p] is not changed, then it is a prime
if (prime[p] == True):
# Update all multiples of p
for i in range(p * 2, n + 1, p):
prime[i] = False
p += 1
prime[0]= False
prime[1]= False
# Print all prime numbers
for p in range(n + 1):
if prime[p]:
print (p)
# driver program
if __name__=='__main__':
n = 30
print("Following are the prime numbers smaller")
print("than or equal to ", n)
print("than or equal to ", n)
SieveOfEratosthenes(n)

LeetCode Flood Fill

CodeCatch
0 likes • Oct 15, 2022
Python
class Solution(object):
def floodFill(self, image, sr, sc, newColor):
R, C = len(image), len(image[0])
color = image[sr][sc]
if color == newColor: return image
def dfs(r, c):
if image[r][c] == color:
image[r][c] = newColor
if r >= 1: dfs(r-1, c)
if r+1 < R: dfs(r+1, c)
if c >= 1: dfs(r, c-1)
if c+1 < C: dfs(r, c+1)
dfs(sr, sc)
return image