## primes numbers finder

0 likes • Mar 12, 2021
Python

## More Python Posts

```#question1.pydef rose(n) :  if n==0 :     yield []  else :    for k in range(0,n) :          for l in rose(k) :        for r in rose(n-1-k) :                  yield [l]+[r]+[r]            def start(n) :  for x in rose(n) :       print(x) #basically I am printing x for each rose(n) file

print("starting program: \n")start(2) # here is where I call the start function```
```import itertoolsimport stringimport time
def guess_password(real):    chars = string.ascii_lowercase + string.ascii_uppercase + string.digits + string.punctuation    attempts = 0    for password_length in range(1, 9):        for guess in itertools.product(chars, repeat=password_length):            startTime = time.time()            attempts += 1            guess = ''.join(guess)            if guess == real:                return 'password is {}. found in {} guesses.'.format(guess, attempts)            loopTime = (time.time() - startTime);            print(guess, attempts, loopTime)
print("\nIt will take A REALLY LONG TIME to crack a long password. Try this out with a 3 or 4 letter password and see how this program works.\n")val = input("Enter a password you want to crack that is 9 characters or below: ")print(guess_password(val.lower()))```

### sum of powers

CodeCatch
0 likes • Nov 19, 2022
Python
```def sum_of_powers(end, power = 2, start = 1):  return sum([(i) ** power for i in range(start, end + 1)])
sum_of_powers(10) # 385sum_of_powers(10, 3) # 3025sum_of_powers(10, 3, 5) # 2925```
```def to_roman_numeral(num):  lookup = [    (1000, 'M'),    (900, 'CM'),    (500, 'D'),    (400, 'CD'),    (100, 'C'),    (90, 'XC'),    (50, 'L'),    (40, 'XL'),    (10, 'X'),    (9, 'IX'),    (5, 'V'),    (4, 'IV'),    (1, 'I'),  ]  res = ''  for (n, roman) in lookup:    (d, num) = divmod(num, n)    res += roman * d  return res
to_roman_numeral(3) # 'III'to_roman_numeral(11) # 'XI'to_roman_numeral(1998) # 'MCMXCVIII'```
```# Given a number n, print all primes smaller than or equal to n. It is also given that n is a small number.# For example, if n is 10, the output should be “2, 3, 5, 7”. If n is 20, the output should be “2, 3, 5, 7, 11, 13, 17, 19”.

# Python program to print all primes smaller than or equal to# n using Sieve of Eratosthenes
def SieveOfEratosthenes(n):		# Create a boolean array "prime[0..n]" and initialize	# all entries it as true. A value in prime[i] will	# finally be false if i is Not a prime, else true.	prime = [True for i in range(n + 1)]	p = 2	while (p * p <= n):				# If prime[p] is not changed, then it is a prime		if (prime[p] == True):						# Update all multiples of p			for i in range(p * 2, n + 1, p):				prime[i] = False		p += 1	prime= False	prime= False	# Print all prime numbers	for p in range(n + 1):		if prime[p]:			print (p)
# driver programif __name__=='__main__':    n = 30    print("Following are the prime numbers smaller")    print("than or equal to ", n)    print("than or equal to ", n)    SieveOfEratosthenes(n)```
```class Solution(object):    def floodFill(self, image, sr, sc, newColor):        R, C = len(image), len(image)        color = image[sr][sc]        if color == newColor: return image        def dfs(r, c):            if image[r][c] == color:                image[r][c] = newColor                if r >= 1: dfs(r-1, c)                if r+1 < R: dfs(r+1, c)                if c >= 1: dfs(r, c-1)                if c+1 < C: dfs(r, c+1)
dfs(sr, sc)        return image```