Loading...
More Python Posts
import stringdef caesar(text, shift, alphabets):def shift_alphabet(alphabet):return alphabet[shift:] + alphabet[:shift]shifted_alphabets = tuple(map(shift_alphabet, alphabets))final_alphabet = "".join(alphabets)final_shifted_alphabet = "".join(shifted_alphabets)table = str.maketrans(final_alphabet, final_shifted_alphabet)return text.translate(table)plain_text = "Hey Skrome, welcome to CodeCatch"print(caesar(plain_text, 8, [string.ascii_lowercase, string.ascii_uppercase, string.punctuation]))
# Python code to demonstrate# method to remove i'th character# Naive Method# Initializing Stringtest_str = "CodeCatch"# Printing original stringprint ("The original string is : " + test_str)# Removing char at pos 3# using loopnew_str = ""for i in range(len(test_str)):if i != 2:new_str = new_str + test_str[i]# Printing string after removalprint ("The string after removal of i'th character : " + new_str)
def clamp_number(num, a, b):return max(min(num, max(a, b)), min(a, b))clamp_number(2, 3, 5) # 3clamp_number(1, -1, -5) # -1
# Python binary search functiondef binary_search(arr, target):left = 0right = len(arr) - 1while left <= right:mid = (left + right) // 2if arr[mid] == target:return midelif arr[mid] < target:left = mid + 1else:right = mid - 1return -1# Usagearr = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]target = 7result = binary_search(arr, target)if result != -1:print(f"Element is present at index {result}")else:print("Element is not present in array")
#SetsU = {0,1,2,3,4,5,6,7,8,9}P = {1,2,3,4}Q = {4,5,6}R = {3,4,6,8,9}def set2bits(xs,us) :bs=[]for x in us :if x in xs :bs.append(1)else:bs.append(0)assert len(us) == len(bs)return bsdef union(set1,set2) :finalSet = set()bitList1 = set2bits(set1, U)bitList2 = set2bits(set2, U)for i in range(len(U)) :if(bitList1[i] or bitList2[i]) :finalSet.add(i)return finalSetdef intersection(set1,set2) :finalSet = set()bitList1 = set2bits(set1, U)bitList2 = set2bits(set2, U)for i in range(len(U)) :if(bitList1[i] and bitList2[i]) :finalSet.add(i)return finalSetdef compliment(set1) :finalSet = set()bitList = set2bits(set1, U)for i in range(len(U)) :if(not bitList[i]) :finalSet.add(i)return finalSetdef implication(a,b):return union(compliment(a), b)################################################################################################################# Problems 1-6 ###################################################################################################################################p \/ (q /\ r) = (p \/ q) /\ (p \/ r)def prob1():return union(P, intersection(Q,R)) == intersection(union(P,Q), union(P,R))#p /\ (q \/ r) = (p /\ q) \/ (p /\ r)def prob2():return intersection(P, union(Q,R)) == union(intersection(P,Q), intersection(P,R))#~(p /\ q) = ~p \/ ~qdef prob3():return compliment(intersection(P,R)) == union(compliment(P), compliment(R))#~(p \/ q) = ~p /\ ~qdef prob4():return compliment(union(P,Q)) == intersection(compliment(P), compliment(Q))#(p=>q) = (~q => ~p)def prob5():return implication(P,Q) == implication(compliment(Q), compliment(P))#(p => q) /\ (q => r) => (p => r)def prob6():return implication(intersection(implication(P,Q), implication(Q,R)), implication(P,R))print("Problem 1: ", prob1())print("Problem 2: ", prob2())print("Problem 3: ", prob3())print("Problem 4: ", prob4())print("Problem 5: ", prob5())print("Problem 6: ", prob6())'''Problem 1: TrueProblem 2: TrueProblem 3: TrueProblem 4: TrueProblem 5: TrueProblem 6: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}'''
# Python program for Bitonic Sort. Note that this program# works only when size of input is a power of 2.# The parameter dir indicates the sorting direction, ASCENDING# or DESCENDING; if (a[i] > a[j]) agrees with the direction,# then a[i] and a[j] are interchanged.*/def compAndSwap(a, i, j, dire):if (dire==1 and a[i] > a[j]) or (dire==0 and a[i] > a[j]):a[i],a[j] = a[j],a[i]# It recursively sorts a bitonic sequence in ascending order,# if dir = 1, and in descending order otherwise (means dir=0).# The sequence to be sorted starts at index position low,# the parameter cnt is the number of elements to be sorted.def bitonicMerge(a, low, cnt, dire):if cnt > 1:k = cnt/2for i in range(low , low+k):compAndSwap(a, i, i+k, dire)bitonicMerge(a, low, k, dire)bitonicMerge(a, low+k, k, dire)# This funcion first produces a bitonic sequence by recursively# sorting its two halves in opposite sorting orders, and then# calls bitonicMerge to make them in the same orderdef bitonicSort(a, low, cnt,dire):if cnt > 1:k = cnt/2bitonicSort(a, low, k, 1)bitonicSort(a, low+k, k, 0)bitonicMerge(a, low, cnt, dire)# Caller of bitonicSort for sorting the entire array of length N# in ASCENDING orderdef sort(a,N, up):bitonicSort(a,0, N, up)# Driver code to test abovea = [3, 7, 4, 8, 6, 2, 1, 5]n = len(a)up = 1sort(a, n, up)print ("\n\nSorted array is")for i in range(n):print("%d" %a[i]),