• Feb 26, 2023 •wabdelh
0 likes • 2 views
#84 48 13 20 61 20 33 97 34 45 6 63 71 66 24 57 92 74 6 25 51 86 48 15 64 55 77 30 56 53 37 99 9 59 57 61 30 97 50 63 59 62 39 32 34 4 96 51 8 86 10 62 16 55 81 88 71 25 27 78 79 88 92 50 16 8 67 82 67 37 84 3 33 4 78 98 39 64 98 94 24 82 45 3 53 74 96 9 10 94 13 79 15 27 56 66 32 81 77 # xor a list of integers to find the lonely integer res = a[0] for i in range(1,len(a)): res = res ^ a[i]
• Nov 19, 2022 •CodeCatch
0 likes • 3 views
# Python program for Plotting Fibonacci # spiral fractal using Turtle import turtle import math def fiboPlot(n): a = 0 b = 1 square_a = a square_b = b # Setting the colour of the plotting pen to blue x.pencolor("blue") # Drawing the first square x.forward(b * factor) x.left(90) x.forward(b * factor) x.left(90) x.forward(b * factor) x.left(90) x.forward(b * factor) # Proceeding in the Fibonacci Series temp = square_b square_b = square_b + square_a square_a = temp # Drawing the rest of the squares for i in range(1, n): x.backward(square_a * factor) x.right(90) x.forward(square_b * factor) x.left(90) x.forward(square_b * factor) x.left(90) x.forward(square_b * factor) # Proceeding in the Fibonacci Series temp = square_b square_b = square_b + square_a square_a = temp # Bringing the pen to starting point of the spiral plot x.penup() x.setposition(factor, 0) x.seth(0) x.pendown() # Setting the colour of the plotting pen to red x.pencolor("red") # Fibonacci Spiral Plot x.left(90) for i in range(n): print(b) fdwd = math.pi * b * factor / 2 fdwd /= 90 for j in range(90): x.forward(fdwd) x.left(1) temp = a a = b b = temp + b # Here 'factor' signifies the multiplicative # factor which expands or shrinks the scale # of the plot by a certain factor. factor = 1 # Taking Input for the number of # Iterations our Algorithm will run n = int(input('Enter the number of iterations (must be > 1): ')) # Plotting the Fibonacci Spiral Fractal # and printing the corresponding Fibonacci Number if n > 0: print("Fibonacci series for", n, "elements :") x = turtle.Turtle() x.speed(100) fiboPlot(n) turtle.done() else: print("Number of iterations must be > 0")
• Jan 23, 2021 •asnark
0 likes • 1 view
""" Take screenshots at x interval - make a movie of doings on a computer. """ import time from datetime import datetime import ffmpeg import pyautogui while True: epoch_time = int(time.time()) today = datetime.now().strftime("%Y_%m_%d") filename = str(epoch_time) + ".png" print("taking screenshot: {0}".format(filename)) myScreenshot = pyautogui.screenshot() myScreenshot.save(today + "/" + filename) time.sleep(5) # # and then tie it together with: https://github.com/kkroening/ffmpeg-python/blob/master/examples/README.md#assemble-video-from-sequence-of-frames # """ import ffmpeg ( ffmpeg .input('./2021_01_22/*.png', pattern_type='glob', framerate=25) .filter('deflicker', mode='pm', size=10) .filter('scale', size='hd1080', force_original_aspect_ratio='increase') .output('movie.mp4', crf=20, preset='slower', movflags='faststart', pix_fmt='yuv420p') .run() ) """
• Nov 18, 2022 •AustinLeath
0 likes • 6 views
# Python Program to calculate the square root num = float(input('Enter a number: ')) num_sqrt = num ** 0.5 print('The square root of %0.3f is %0.3f'%(num ,num_sqrt))
#You are given a two-digit integer n. Return the sum of its digits. #Example #For n = 29 the output should be solution (n) = 11 def solution(n): return (n//10 + n%10)
0 likes • 0 views
# Given a number n, print all primes smaller than or equal to n. It is also given that n is a small number. # For example, if n is 10, the output should be “2, 3, 5, 7”. If n is 20, the output should be “2, 3, 5, 7, 11, 13, 17, 19”. # Python program to print all primes smaller than or equal to # n using Sieve of Eratosthenes def SieveOfEratosthenes(n): # Create a boolean array "prime[0..n]" and initialize # all entries it as true. A value in prime[i] will # finally be false if i is Not a prime, else true. prime = [True for i in range(n + 1)] p = 2 while (p * p <= n): # If prime[p] is not changed, then it is a prime if (prime[p] == True): # Update all multiples of p for i in range(p * 2, n + 1, p): prime[i] = False p += 1 prime[0]= False prime[1]= False # Print all prime numbers for p in range(n + 1): if prime[p]: print (p) # driver program if __name__=='__main__': n = 30 print("Following are the prime numbers smaller") print("than or equal to ", n) print("than or equal to ", n) SieveOfEratosthenes(n)