Loading...
More Python Posts
# Prompt user for base and heightbase = float(input("Enter the base of the triangle: "))height = float(input("Enter the height of the triangle: "))# Calculate the areaarea = (base * height) / 2# Display the resultprint("The area of the triangle is:", area)
# Python code to find the URL from an input string# Using the regular expressionimport redef Find(string):# findall() has been used# with valid conditions for urls in stringregex = r"(?i)\b((?:https?://|www\d{0,3}[.]|[a-z0-9.\-]+[.][a-z]{2,4}/)(?:[^\s()<>]+|\(([^\s()<>]+|(\([^\s()<>]+\)))*\))+(?:\(([^\s()<>]+|(\([^\s()<>]+\)))*\)|[^\s`!()\[\]{};:'\".,<>?«»“”‘’]))"url = re.findall(regex,string)return [x[0] for x in url]# Driver Codestring = 'My Profile: https://codecatch.net'print("Urls: ", Find(string))
#Python program to print topological sorting of a DAGfrom collections import defaultdict#Class to represent a graphclass Graph:def __init__(self,vertices):self.graph = defaultdict(list) #dictionary containing adjacency Listself.V = vertices #No. of vertices# function to add an edge to graphdef addEdge(self,u,v):self.graph[u].append(v)# A recursive function used by topologicalSortdef topologicalSortUtil(self,v,visited,stack):# Mark the current node as visited.visited[v] = True# Recur for all the vertices adjacent to this vertexfor i in self.graph[v]:if visited[i] == False:self.topologicalSortUtil(i,visited,stack)# Push current vertex to stack which stores resultstack.insert(0,v)# The function to do Topological Sort. It uses recursive# topologicalSortUtil()def topologicalSort(self):# Mark all the vertices as not visitedvisited = [False]*self.Vstack =[]# Call the recursive helper function to store Topological# Sort starting from all vertices one by onefor i in range(self.V):if visited[i] == False:self.topologicalSortUtil(i,visited,stack)# Print contents of stackprint(stack)g= Graph(6)g.addEdge(5, 2);g.addEdge(5, 0);g.addEdge(4, 0);g.addEdge(4, 1);g.addEdge(2, 3);g.addEdge(3, 1);print("Following is a Topological Sort of the given graph")g.topologicalSort()
my_list = [1, 2, 3, 4, 5]removed_element = my_list.pop(2) # Remove and return element at index 2print(removed_element) # 3print(my_list) # [1, 2, 4, 5]last_element = my_list.pop() # Remove and return the last elementprint(last_element) # 5print(my_list) # [1, 2, 4]
# Python program for Plotting Fibonacci# spiral fractal using Turtleimport turtleimport mathdef fiboPlot(n):a = 0b = 1square_a = asquare_b = b# Setting the colour of the plotting pen to bluex.pencolor("blue")# Drawing the first squarex.forward(b * factor)x.left(90)x.forward(b * factor)x.left(90)x.forward(b * factor)x.left(90)x.forward(b * factor)# Proceeding in the Fibonacci Seriestemp = square_bsquare_b = square_b + square_asquare_a = temp# Drawing the rest of the squaresfor i in range(1, n):x.backward(square_a * factor)x.right(90)x.forward(square_b * factor)x.left(90)x.forward(square_b * factor)x.left(90)x.forward(square_b * factor)# Proceeding in the Fibonacci Seriestemp = square_bsquare_b = square_b + square_asquare_a = temp# Bringing the pen to starting point of the spiral plotx.penup()x.setposition(factor, 0)x.seth(0)x.pendown()# Setting the colour of the plotting pen to redx.pencolor("red")# Fibonacci Spiral Plotx.left(90)for i in range(n):print(b)fdwd = math.pi * b * factor / 2fdwd /= 90for j in range(90):x.forward(fdwd)x.left(1)temp = aa = bb = temp + b# Here 'factor' signifies the multiplicative# factor which expands or shrinks the scale# of the plot by a certain factor.factor = 1# Taking Input for the number of# Iterations our Algorithm will runn = int(input('Enter the number of iterations (must be > 1): '))# Plotting the Fibonacci Spiral Fractal# and printing the corresponding Fibonacci Numberif n > 0:print("Fibonacci series for", n, "elements :")x = turtle.Turtle()x.speed(100)fiboPlot(n)turtle.done()else:print("Number of iterations must be > 0")
#SetsU = {0,1,2,3,4,5,6,7,8,9}P = {1,2,3,4}Q = {4,5,6}R = {3,4,6,8,9}def set2bits(xs,us) :bs=[]for x in us :if x in xs :bs.append(1)else:bs.append(0)assert len(us) == len(bs)return bsdef union(set1,set2) :finalSet = set()bitList1 = set2bits(set1, U)bitList2 = set2bits(set2, U)for i in range(len(U)) :if(bitList1[i] or bitList2[i]) :finalSet.add(i)return finalSetdef intersection(set1,set2) :finalSet = set()bitList1 = set2bits(set1, U)bitList2 = set2bits(set2, U)for i in range(len(U)) :if(bitList1[i] and bitList2[i]) :finalSet.add(i)return finalSetdef compliment(set1) :finalSet = set()bitList = set2bits(set1, U)for i in range(len(U)) :if(not bitList[i]) :finalSet.add(i)return finalSetdef implication(a,b):return union(compliment(a), b)################################################################################################################# Problems 1-6 ###################################################################################################################################p \/ (q /\ r) = (p \/ q) /\ (p \/ r)def prob1():return union(P, intersection(Q,R)) == intersection(union(P,Q), union(P,R))#p /\ (q \/ r) = (p /\ q) \/ (p /\ r)def prob2():return intersection(P, union(Q,R)) == union(intersection(P,Q), intersection(P,R))#~(p /\ q) = ~p \/ ~qdef prob3():return compliment(intersection(P,R)) == union(compliment(P), compliment(R))#~(p \/ q) = ~p /\ ~qdef prob4():return compliment(union(P,Q)) == intersection(compliment(P), compliment(Q))#(p=>q) = (~q => ~p)def prob5():return implication(P,Q) == implication(compliment(Q), compliment(P))#(p => q) /\ (q => r) => (p => r)def prob6():return implication(intersection(implication(P,Q), implication(Q,R)), implication(P,R))print("Problem 1: ", prob1())print("Problem 2: ", prob2())print("Problem 3: ", prob3())print("Problem 4: ", prob4())print("Problem 5: ", prob5())print("Problem 6: ", prob6())'''Problem 1: TrueProblem 2: TrueProblem 3: TrueProblem 4: TrueProblem 5: TrueProblem 6: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}'''