Skip to main content

delay time lambda

Nov 19, 2022CodeCatch
Loading...

More Python Posts

Calculate the Area of a Triangle

May 31, 2023CodeCatch

0 likes • 0 views

# Prompt user for base and height
base = float(input("Enter the base of the triangle: "))
height = float(input("Enter the height of the triangle: "))
# Calculate the area
area = (base * height) / 2
# Display the result
print("The area of the triangle is:", area)

Find URL in string

Nov 19, 2022CodeCatch

0 likes • 0 views

# Python code to find the URL from an input string
# Using the regular expression
import re
def Find(string):
# findall() has been used
# with valid conditions for urls in string
regex = r"(?i)\b((?:https?://|www\d{0,3}[.]|[a-z0-9.\-]+[.][a-z]{2,4}/)(?:[^\s()<>]+|\(([^\s()<>]+|(\([^\s()<>]+\)))*\))+(?:\(([^\s()<>]+|(\([^\s()<>]+\)))*\)|[^\s`!()\[\]{};:'\".,<>?«»“”‘’]))"
url = re.findall(regex,string)
return [x[0] for x in url]
# Driver Code
string = 'My Profile: https://codecatch.net'
print("Urls: ", Find(string))

Topological sort

Nov 19, 2022CodeCatch

0 likes • 0 views

#Python program to print topological sorting of a DAG
from collections import defaultdict
#Class to represent a graph
class Graph:
def __init__(self,vertices):
self.graph = defaultdict(list) #dictionary containing adjacency List
self.V = vertices #No. of vertices
# function to add an edge to graph
def addEdge(self,u,v):
self.graph[u].append(v)
# A recursive function used by topologicalSort
def topologicalSortUtil(self,v,visited,stack):
# Mark the current node as visited.
visited[v] = True
# Recur for all the vertices adjacent to this vertex
for i in self.graph[v]:
if visited[i] == False:
self.topologicalSortUtil(i,visited,stack)
# Push current vertex to stack which stores result
stack.insert(0,v)
# The function to do Topological Sort. It uses recursive
# topologicalSortUtil()
def topologicalSort(self):
# Mark all the vertices as not visited
visited = [False]*self.V
stack =[]
# Call the recursive helper function to store Topological
# Sort starting from all vertices one by one
for i in range(self.V):
if visited[i] == False:
self.topologicalSortUtil(i,visited,stack)
# Print contents of stack
print(stack)
g= Graph(6)
g.addEdge(5, 2);
g.addEdge(5, 0);
g.addEdge(4, 0);
g.addEdge(4, 1);
g.addEdge(2, 3);
g.addEdge(3, 1);
print("Following is a Topological Sort of the given graph")
g.topologicalSort()
my_list = [1, 2, 3, 4, 5]
removed_element = my_list.pop(2) # Remove and return element at index 2
print(removed_element) # 3
print(my_list) # [1, 2, 4, 5]
last_element = my_list.pop() # Remove and return the last element
print(last_element) # 5
print(my_list) # [1, 2, 4]

Plotting Fibonacci

Nov 19, 2022CodeCatch

0 likes • 0 views

# Python program for Plotting Fibonacci
# spiral fractal using Turtle
import turtle
import math
def fiboPlot(n):
a = 0
b = 1
square_a = a
square_b = b
# Setting the colour of the plotting pen to blue
x.pencolor("blue")
# Drawing the first square
x.forward(b * factor)
x.left(90)
x.forward(b * factor)
x.left(90)
x.forward(b * factor)
x.left(90)
x.forward(b * factor)
# Proceeding in the Fibonacci Series
temp = square_b
square_b = square_b + square_a
square_a = temp
# Drawing the rest of the squares
for i in range(1, n):
x.backward(square_a * factor)
x.right(90)
x.forward(square_b * factor)
x.left(90)
x.forward(square_b * factor)
x.left(90)
x.forward(square_b * factor)
# Proceeding in the Fibonacci Series
temp = square_b
square_b = square_b + square_a
square_a = temp
# Bringing the pen to starting point of the spiral plot
x.penup()
x.setposition(factor, 0)
x.seth(0)
x.pendown()
# Setting the colour of the plotting pen to red
x.pencolor("red")
# Fibonacci Spiral Plot
x.left(90)
for i in range(n):
print(b)
fdwd = math.pi * b * factor / 2
fdwd /= 90
for j in range(90):
x.forward(fdwd)
x.left(1)
temp = a
a = b
b = temp + b
# Here 'factor' signifies the multiplicative
# factor which expands or shrinks the scale
# of the plot by a certain factor.
factor = 1
# Taking Input for the number of
# Iterations our Algorithm will run
n = int(input('Enter the number of iterations (must be > 1): '))
# Plotting the Fibonacci Spiral Fractal
# and printing the corresponding Fibonacci Number
if n > 0:
print("Fibonacci series for", n, "elements :")
x = turtle.Turtle()
x.speed(100)
fiboPlot(n)
turtle.done()
else:
print("Number of iterations must be > 0")

Using logic with sets

Nov 18, 2022AustinLeath

0 likes • 1 view

#Sets
U = {0,1,2,3,4,5,6,7,8,9}
P = {1,2,3,4}
Q = {4,5,6}
R = {3,4,6,8,9}
def set2bits(xs,us) :
bs=[]
for x in us :
if x in xs :
bs.append(1)
else:
bs.append(0)
assert len(us) == len(bs)
return bs
def union(set1,set2) :
finalSet = set()
bitList1 = set2bits(set1, U)
bitList2 = set2bits(set2, U)
for i in range(len(U)) :
if(bitList1[i] or bitList2[i]) :
finalSet.add(i)
return finalSet
def intersection(set1,set2) :
finalSet = set()
bitList1 = set2bits(set1, U)
bitList2 = set2bits(set2, U)
for i in range(len(U)) :
if(bitList1[i] and bitList2[i]) :
finalSet.add(i)
return finalSet
def compliment(set1) :
finalSet = set()
bitList = set2bits(set1, U)
for i in range(len(U)) :
if(not bitList[i]) :
finalSet.add(i)
return finalSet
def implication(a,b):
return union(compliment(a), b)
###########################################################################################
###################### Problems 1-6 #######################################
###########################################################################################
#p \/ (q /\ r) = (p \/ q) /\ (p \/ r)
def prob1():
return union(P, intersection(Q,R)) == intersection(union(P,Q), union(P,R))
#p /\ (q \/ r) = (p /\ q) \/ (p /\ r)
def prob2():
return intersection(P, union(Q,R)) == union(intersection(P,Q), intersection(P,R))
#~(p /\ q) = ~p \/ ~q
def prob3():
return compliment(intersection(P,R)) == union(compliment(P), compliment(R))
#~(p \/ q) = ~p /\ ~q
def prob4():
return compliment(union(P,Q)) == intersection(compliment(P), compliment(Q))
#(p=>q) = (~q => ~p)
def prob5():
return implication(P,Q) == implication(compliment(Q), compliment(P))
#(p => q) /\ (q => r) => (p => r)
def prob6():
return implication(intersection(implication(P,Q), implication(Q,R)), implication(P,R))
print("Problem 1: ", prob1())
print("Problem 2: ", prob2())
print("Problem 3: ", prob3())
print("Problem 4: ", prob4())
print("Problem 5: ", prob5())
print("Problem 6: ", prob6())
'''
Problem 1: True
Problem 2: True
Problem 3: True
Problem 4: True
Problem 5: True
Problem 6: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
'''