Loading...
More Python Posts
list_1 = [1,2,3,4,5,6,7,8,9]cubed = map(lambda x: pow(x,3), list_1)print(list(cubed))#Results#[1, 8, 27, 64, 125, 216, 343, 512, 729]
import sys# sample TuplesTuple1 = ("A", 1, "B", 2, "C", 3)Tuple2 = ("Geek1", "Raju", "Geek2", "Nikhil", "Geek3", "Deepanshu")Tuple3 = ((1, "Lion"), ( 2, "Tiger"), (3, "Fox"), (4, "Wolf"))# print the sizes of sample Tuplesprint("Size of Tuple1: " + str(sys.getsizeof(Tuple1)) + "bytes")print("Size of Tuple2: " + str(sys.getsizeof(Tuple2)) + "bytes")print("Size of Tuple3: " + str(sys.getsizeof(Tuple3)) + "bytes")
#SetsU = {0,1,2,3,4,5,6,7,8,9}P = {1,2,3,4}Q = {4,5,6}R = {3,4,6,8,9}def set2bits(xs,us) :bs=[]for x in us :if x in xs :bs.append(1)else:bs.append(0)assert len(us) == len(bs)return bsdef union(set1,set2) :finalSet = set()bitList1 = set2bits(set1, U)bitList2 = set2bits(set2, U)for i in range(len(U)) :if(bitList1[i] or bitList2[i]) :finalSet.add(i)return finalSetdef intersection(set1,set2) :finalSet = set()bitList1 = set2bits(set1, U)bitList2 = set2bits(set2, U)for i in range(len(U)) :if(bitList1[i] and bitList2[i]) :finalSet.add(i)return finalSetdef compliment(set1) :finalSet = set()bitList = set2bits(set1, U)for i in range(len(U)) :if(not bitList[i]) :finalSet.add(i)return finalSetdef implication(a,b):return union(compliment(a), b)################################################################################################################# Problems 1-6 ###################################################################################################################################p \/ (q /\ r) = (p \/ q) /\ (p \/ r)def prob1():return union(P, intersection(Q,R)) == intersection(union(P,Q), union(P,R))#p /\ (q \/ r) = (p /\ q) \/ (p /\ r)def prob2():return intersection(P, union(Q,R)) == union(intersection(P,Q), intersection(P,R))#~(p /\ q) = ~p \/ ~qdef prob3():return compliment(intersection(P,R)) == union(compliment(P), compliment(R))#~(p \/ q) = ~p /\ ~qdef prob4():return compliment(union(P,Q)) == intersection(compliment(P), compliment(Q))#(p=>q) = (~q => ~p)def prob5():return implication(P,Q) == implication(compliment(Q), compliment(P))#(p => q) /\ (q => r) => (p => r)def prob6():return implication(intersection(implication(P,Q), implication(Q,R)), implication(P,R))print("Problem 1: ", prob1())print("Problem 2: ", prob2())print("Problem 3: ", prob3())print("Problem 4: ", prob4())print("Problem 5: ", prob5())print("Problem 6: ", prob6())'''Problem 1: TrueProblem 2: TrueProblem 3: TrueProblem 4: TrueProblem 5: TrueProblem 6: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}'''
#You are given a two-digit integer n. Return the sum of its digits.#Example#For n = 29 the output should be solution (n) = 11def solution(n):return (n//10 + n%10)
from collections import Counterdef find_parity_outliers(nums):return [x for x in numsif x % 2 != Counter([n % 2 for n in nums]).most_common()[0][0]]find_parity_outliers([1, 2, 3, 4, 6]) # [1, 3]
def sum_of_powers(end, power = 2, start = 1):return sum([(i) ** power for i in range(start, end + 1)])sum_of_powers(10) # 385sum_of_powers(10, 3) # 3025sum_of_powers(10, 3, 5) # 2925