Loading...
More Python Posts
def sum_of_powers(end, power = 2, start = 1):return sum([(i) ** power for i in range(start, end + 1)])sum_of_powers(10) # 385sum_of_powers(10, 3) # 3025sum_of_powers(10, 3, 5) # 2925
# @return a list of strings, [s1, s2]def letterCombinations(self, digits):if '' == digits: return []kvmaps = {'2': 'abc','3': 'def','4': 'ghi','5': 'jkl','6': 'mno','7': 'pqrs','8': 'tuv','9': 'wxyz'}return reduce(lambda acc, digit: [x + y for x in acc for y in kvmaps[digit]], digits, [''])
# Prompt user for a decimal numberdecimal = int(input("Enter a decimal number: "))# Convert decimal to binarybinary = bin(decimal)# Convert decimal to hexadecimalhexadecimal = hex(decimal)# Display the resultsprint("Binary:", binary)print("Hexadecimal:", hexadecimal)
list_1 = [1,2,3,4,5,6,7,8,9]cubed = map(lambda x: pow(x,3), list_1)print(list(cubed))#Results#[1, 8, 27, 64, 125, 216, 343, 512, 729]
#SetsU = {0,1,2,3,4,5,6,7,8,9}P = {1,2,3,4}Q = {4,5,6}R = {3,4,6,8,9}def set2bits(xs,us) :bs=[]for x in us :if x in xs :bs.append(1)else:bs.append(0)assert len(us) == len(bs)return bsdef union(set1,set2) :finalSet = set()bitList1 = set2bits(set1, U)bitList2 = set2bits(set2, U)for i in range(len(U)) :if(bitList1[i] or bitList2[i]) :finalSet.add(i)return finalSetdef intersection(set1,set2) :finalSet = set()bitList1 = set2bits(set1, U)bitList2 = set2bits(set2, U)for i in range(len(U)) :if(bitList1[i] and bitList2[i]) :finalSet.add(i)return finalSetdef compliment(set1) :finalSet = set()bitList = set2bits(set1, U)for i in range(len(U)) :if(not bitList[i]) :finalSet.add(i)return finalSetdef implication(a,b):return union(compliment(a), b)################################################################################################################# Problems 1-6 ###################################################################################################################################p \/ (q /\ r) = (p \/ q) /\ (p \/ r)def prob1():return union(P, intersection(Q,R)) == intersection(union(P,Q), union(P,R))#p /\ (q \/ r) = (p /\ q) \/ (p /\ r)def prob2():return intersection(P, union(Q,R)) == union(intersection(P,Q), intersection(P,R))#~(p /\ q) = ~p \/ ~qdef prob3():return compliment(intersection(P,R)) == union(compliment(P), compliment(R))#~(p \/ q) = ~p /\ ~qdef prob4():return compliment(union(P,Q)) == intersection(compliment(P), compliment(Q))#(p=>q) = (~q => ~p)def prob5():return implication(P,Q) == implication(compliment(Q), compliment(P))#(p => q) /\ (q => r) => (p => r)def prob6():return implication(intersection(implication(P,Q), implication(Q,R)), implication(P,R))print("Problem 1: ", prob1())print("Problem 2: ", prob2())print("Problem 3: ", prob3())print("Problem 4: ", prob4())print("Problem 5: ", prob5())print("Problem 6: ", prob6())'''Problem 1: TrueProblem 2: TrueProblem 3: TrueProblem 4: TrueProblem 5: TrueProblem 6: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}'''
# Listlst = [1, 2, 3, 'Alice', 'Alice']# One-Linerindices = [i for i in range(len(lst)) if lst[i]=='Alice']# Resultprint(indices)# [3, 4]