Skip to main content

return byte size

Nov 19, 2022CodeCatch
Loading...

More Python Posts

Calculate Square Root

Nov 18, 2022AustinLeath

0 likes • 4 views

# Python Program to calculate the square root
num = float(input('Enter a number: '))
num_sqrt = num ** 0.5
print('The square root of %0.3f is %0.3f'%(num ,num_sqrt))

Convert Decimal to Binary and Hexadecimal

May 31, 2023CodeCatch

0 likes • 0 views

# Prompt user for a decimal number
decimal = int(input("Enter a decimal number: "))
# Convert decimal to binary
binary = bin(decimal)
# Convert decimal to hexadecimal
hexadecimal = hex(decimal)
# Display the results
print("Binary:", binary)
print("Hexadecimal:", hexadecimal)

get LDAP user

Nov 18, 2022AustinLeath

0 likes • 0 views

def get_ldap_user(member_cn, user, passwrd):
'''
Get an LDAP user and return the SAMAccountName
'''
#---- Setting up the Connection
#account used for binding - Avoid putting these in version control
bindDN = str(user) + "@unt.ad.unt.edu"
bindPass = passwrd
#set some tuneables for the LDAP library.
ldap.set_option(ldap.OPT_X_TLS_REQUIRE_CERT, ldap.OPT_X_TLS_ALLOW)
#ldap.set_option(ldap.OPT_X_TLS_CACERTFILE, CACERTFILE)
conn = ldap.initialize('ldaps://unt.ad.unt.edu')
conn.protocol_version = 3
conn.set_option(ldap.OPT_REFERRALS, 0)
#authenticate the connection so that you can make additional queries
try:
result = conn.simple_bind_s(bindDN, bindPass)
except ldap.INVALID_CREDENTIALS:
result = "Invalid credentials for %s" % user
sys.exit()
#build query in the form of (uid=user)
ldap_query = '(|(displayName=' + member_cn + ')(cn='+ member_cn + ')(name=' + member_cn + '))'
ldap_info = conn.search_s('DC=unt,DC=ad,DC=unt,DC=edu', ldap.SCOPE_SUBTREE, filterstr=ldap_query)
sAMAccountName = str(ldap_info[0][1]['sAMAccountName']).replace("[b'", "").replace("']","")
return sAMAccountName

Return Letter Combinations

Nov 18, 2022AustinLeath

0 likes • 0 views

# @return a list of strings, [s1, s2]
def letterCombinations(self, digits):
if '' == digits: return []
kvmaps = {
'2': 'abc',
'3': 'def',
'4': 'ghi',
'5': 'jkl',
'6': 'mno',
'7': 'pqrs',
'8': 'tuv',
'9': 'wxyz'
}
return reduce(lambda acc, digit: [x + y for x in acc for y in kvmaps[digit]], digits, [''])

UNT CSCE 2100 Assignment 6

Nov 18, 2022AustinLeath

0 likes • 0 views

"""
Assignment 6
The goal is to make a graph of
who bit who and who was bitten.
There should be 10 nodes and 15 edges.
3 arrows of biting each other and
3 arrows of someone biting themselves.
Networkx can not do self biting
arrows, but it is in the code.
"""
from graphviz import Digraph as DDotGraph
from graphviz import Graph as UDotGraph
import networkx as nx
from networkx.algorithms.dag import transitive_closure
import graphviz as gv
import matplotlib.pyplot as plt
import numpy as np
from numpy.linalg import matrix_power
"""
class DGraph:
def __init__(self):
self.d = dict()
def clear(self):
self.d = dict()
def add_node(self,n):
if not self.d.get(n):
self.d[n] = set()
def add_edge(self,e):
f,t=e
self.add_node(f)
self.add_node(t)
vs=self.d.get(f)
if not vs:
self.d[f] = {t}
else:
vs.add(t)
def add_edges_from(self,es):
for e in es:
self.add_edge(e)
def edges(self):
for f in self.d:
for t in self.d[f]:
yield (f,t)
def number_of_nodes(self):
return len(self.d)
def __repr__(self):
return self.d.__repr__()
def show(self):
dot = gv.Digraph()
for e in self.edges():
#print(e)
f, t = e
dot.edge(str(f), str(t), label='')
#print(dot.source)
show(dot)
# displays graph with graphviz
def show(dot, show=True, file_name='graph.gv'):
dot.render(file_name, view=show)
def showGraph(g,label="",directed=True):
if directed:
dot = gv.Digraph()
else:
dot = gv.Graph()
for e in g.edges():
print(e)
f, t = e
dot.edge(str(f), str(t), label=label)
print(dot.source)
show(dot)
def bit():
G = DGraph()
G.add_edge(("Blade","Samara"))
G.add_edge(("Shadow","Wolfe"))
G.add_edge(("Raven", "Austin"))
G.add_edge(("Blade", "Alice"))
G.add_edge(("Alice","Brandon"))
G.add_edge(("Blade", "Wolfe"))
G.add_edge(("Samara", "Robin"))
G.add_edge(("Samara", "Raven"))
G.add_edge(("Samara", "Hamed"))
G.add_edge(("Wolfe", "Blade"))
G.add_edge(("Hamed", "Samara"))
G.add_edge(("Wolfe", "Shadow"))
G.add_edge(("Brandon", "Brandon"))
G.add_edge(("Hamed", "Hamed"))
G.add_edge(("Austin", "Austin"))
showGraph(G, label="bit")
bit()
def bitten():
G=DGraph()
G.add_edge(("Samara","Blade"))
G.add_edge(("Wolfe","Shadow"))
G.add_edge(("Austin", "Raven"))
G.add_edge(("Alice","Blade"))
G.add_edge(("Brandon", "Alice"))
G.add_edge(("Wolfe", "Blade" ))
G.add_edge(("Robin", "Samara"))
G.add_edge(("Raven", "Samara"))
G.add_edge(("Hamed", "Samara"))
G.add_edge(("Blade", "Wolfe"))
G.add_edge(("Samara", "Hamed"))
G.add_edge(("Shadow", "Wolfe"))
G.add_edge(("Brandon", "Brandon"))
G.add_edge(("Hamed", "Hamed"))
G.add_edge(("Austin", "Austin"))
showGraph(G, label="bitten by")
#bitten()
family = ["Blade", "Samara", "Shadow", "Wolfe", "Raven", "Alice"]
"""
#Do transitive closure call out and the
#matrix power operation should be the same
D = nx.DiGraph()
#D.add_nodes_from("SamaraBladeWolfeShadowAliceRavenBrandonRobinHamedAustin")
D.add_edge("Blade","Samara")
D.add_edge("Shadow","Wolfe")
D.add_edge("Raven", "Austin")
D.add_edge("Blade", "Alice")
D.add_edge("Alice","Brandon")
D.add_edge("Blade", "Wolfe")
D.add_edge("Samara", "Robin")
D.add_edge("Samara", "Raven")
D.add_edge("Samara", "Hamed")
D.add_edge("Wolfe", "Blade")
D.add_edge("Hamed", "Samara")
D.add_edge("Wolfe", "Shadow")
D.add_edge("Brandon", "Brandon")
D.add_edge("Hamed", "Hamed")
D.add_edge("Austin", "Austin")
T = transitive_closure(D)
for e in D.edges(): print(e)
for n in D.nodes(): print(n)
def show(H):
nx.draw(H, with_labels=True, font_weight='bold')
plt.show()
#Use nx.to_numpy_matrix instead of nx.adjacency_matrix
# M = nx.adjacency_matrix(D)
# MT = nx.adjacency_matrix(T)
M = nx.to_numpy_matrix(D)
MT = nx.to_numpy_matrix(T)
M2 = M@M
def mPower(M, k): #M is numpy matrix
assert k >= 1
P = M
for _ in range(k):
P = P @ M
return P
def tc(M):
#compute transitive closure
pass
D1 = nx.DiGraph(M)
D2 = nx.DiGraph(M2)
print('Matrix for Original\n', M)
N = nx.to_numpy_array(D,dtype=int)
print('np_array for Original\n', N)
print('\nMatrix for Transitive Closure\n', MT)
N2 = nx.to_numpy_array(T,dtype=int)
print('np_array for Transitive Closure\n', N2)
show(D) #can use D, T, and numpy matrix power operation
show(T)
show(T)

Copy file to destination

Nov 18, 2022AustinLeath

0 likes • 1 view

# importing the modules
import os
import shutil
# getting the current working directory
src_dir = os.getcwd()
# printing current directory
print(src_dir)
# copying the files
shutil.copyfile('test.txt', 'test.txt.copy2') #copy src to dst
# printing the list of new files
print(os.listdir())