Skip to main content
Loading...

More Python Posts

#Sets
U = {0,1,2,3,4,5,6,7,8,9}
P = {1,2,3,4}
Q = {4,5,6}
R = {3,4,6,8,9}

def set2bits(xs,us) :
    bs=[]
    for x in us :
        if x in xs :
            bs.append(1)
        else:
            bs.append(0)
    assert len(us) == len(bs)
    return bs

def union(set1,set2) :
    finalSet = set()
    bitList1 = set2bits(set1, U)
    bitList2 = set2bits(set2, U)

    for i in range(len(U)) :
        if(bitList1[i] or bitList2[i]) :
            finalSet.add(i)

    return finalSet

def intersection(set1,set2) :
    finalSet = set()
    bitList1 = set2bits(set1, U)
    bitList2 = set2bits(set2, U)

    for i in range(len(U)) :
        if(bitList1[i] and bitList2[i]) :
            finalSet.add(i)

    return finalSet

def compliment(set1) :
    finalSet = set()
    bitList = set2bits(set1, U)

    for i in range(len(U)) :
        if(not bitList[i]) :
            finalSet.add(i)

    return finalSet

def implication(a,b):
    return union(compliment(a), b)

###########################################################################################
######################         Problems 1-6         #######################################
###########################################################################################

#p \/ (q /\ r) = (p \/ q) /\ (p \/ r)
def prob1():
    return union(P, intersection(Q,R)) == intersection(union(P,Q), union(P,R))

#p /\ (q \/ r) = (p /\ q) \/ (p /\ r)
def prob2():
    return intersection(P, union(Q,R)) == union(intersection(P,Q), intersection(P,R))

#~(p /\ q) = ~p \/ ~q
def prob3():
    return compliment(intersection(P,R)) == union(compliment(P), compliment(R))

#~(p \/ q) = ~p /\ ~q
def prob4():
    return compliment(union(P,Q)) == intersection(compliment(P), compliment(Q))

#(p=>q) = (~q => ~p)
def prob5():
    return implication(P,Q) == implication(compliment(Q), compliment(P))

#(p => q) /\ (q => r)  =>  (p => r)
def prob6():
    return implication(intersection(implication(P,Q), implication(Q,R)), implication(P,R))


print("Problem 1: ", prob1())
print("Problem 2: ", prob2())
print("Problem 3: ", prob3())
print("Problem 4: ", prob4())
print("Problem 5: ", prob5())
print("Problem 6: ", prob6())

'''
Problem 1:  True
Problem 2:  True
Problem 3:  True
Problem 4:  True
Problem 5:  True
Problem 6:  {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
'''
"""
Assignment 6

The goal is to make a graph of
who bit who and who was bitten.
There should be 10 nodes and 15 edges.
3 arrows of biting each other and
3 arrows of someone biting themselves.
Networkx can not do self biting
arrows, but it is in the code.
"""

from graphviz import Digraph as DDotGraph
from graphviz import Graph as UDotGraph
import networkx as nx
from networkx.algorithms.dag import transitive_closure
import graphviz as gv
import matplotlib.pyplot as plt
import numpy as np
from numpy.linalg import matrix_power

"""
class DGraph:
    def __init__(self):
        self.d = dict()

    def clear(self):
        self.d = dict()

    def add_node(self,n):
        if not self.d.get(n):
            self.d[n] = set()

    def add_edge(self,e):
        f,t=e
        self.add_node(f)
        self.add_node(t)
        vs=self.d.get(f)
        if not vs:
            self.d[f] = {t}
        else:
            vs.add(t)

    def add_edges_from(self,es):
        for e in es:
            self.add_edge(e)

    def edges(self):
        for f in self.d:
            for t in self.d[f]:
                yield (f,t)

    def number_of_nodes(self):
        return len(self.d)

    def __repr__(self):
        return self.d.__repr__()

    def show(self):
        dot = gv.Digraph()
        for e in self.edges():
            #print(e)
            f, t = e
            dot.edge(str(f), str(t), label='')
        #print(dot.source)
        show(dot)

# displays graph with graphviz
def show(dot, show=True, file_name='graph.gv'):
    dot.render(file_name, view=show)


def showGraph(g,label="",directed=True):
    if directed:
        dot = gv.Digraph()
    else:
        dot = gv.Graph()

    for e in g.edges():
        print(e)
        f, t = e
        dot.edge(str(f), str(t), label=label)
    print(dot.source)
    show(dot)


def bit():
    G = DGraph()
    G.add_edge(("Blade","Samara"))
    G.add_edge(("Shadow","Wolfe"))
    G.add_edge(("Raven", "Austin"))
    G.add_edge(("Blade", "Alice"))
    G.add_edge(("Alice","Brandon"))
    G.add_edge(("Blade", "Wolfe"))
    G.add_edge(("Samara", "Robin"))
    G.add_edge(("Samara", "Raven"))
    G.add_edge(("Samara", "Hamed"))
    G.add_edge(("Wolfe", "Blade"))
    G.add_edge(("Hamed", "Samara"))
    G.add_edge(("Wolfe", "Shadow"))
    G.add_edge(("Brandon", "Brandon"))
    G.add_edge(("Hamed", "Hamed"))
    G.add_edge(("Austin", "Austin"))
    showGraph(G, label="bit")

bit()

def bitten():
    G=DGraph()
    G.add_edge(("Samara","Blade"))
    G.add_edge(("Wolfe","Shadow"))
    G.add_edge(("Austin", "Raven"))
    G.add_edge(("Alice","Blade"))
    G.add_edge(("Brandon", "Alice"))
    G.add_edge(("Wolfe", "Blade" ))
    G.add_edge(("Robin", "Samara"))
    G.add_edge(("Raven", "Samara"))
    G.add_edge(("Hamed", "Samara"))
    G.add_edge(("Blade", "Wolfe"))
    G.add_edge(("Samara", "Hamed"))
    G.add_edge(("Shadow", "Wolfe"))
    G.add_edge(("Brandon", "Brandon"))
    G.add_edge(("Hamed", "Hamed"))
    G.add_edge(("Austin", "Austin"))
    showGraph(G, label="bitten by")

#bitten()

family = ["Blade", "Samara", "Shadow", "Wolfe", "Raven", "Alice"]
"""

#Do transitive closure call out and the
#matrix power operation should be the same
D = nx.DiGraph()
#D.add_nodes_from("SamaraBladeWolfeShadowAliceRavenBrandonRobinHamedAustin")
D.add_edge("Blade","Samara")
D.add_edge("Shadow","Wolfe")
D.add_edge("Raven", "Austin")
D.add_edge("Blade", "Alice")
D.add_edge("Alice","Brandon")
D.add_edge("Blade", "Wolfe")
D.add_edge("Samara", "Robin")
D.add_edge("Samara", "Raven")
D.add_edge("Samara", "Hamed")
D.add_edge("Wolfe", "Blade")
D.add_edge("Hamed", "Samara")
D.add_edge("Wolfe", "Shadow")
D.add_edge("Brandon", "Brandon")
D.add_edge("Hamed", "Hamed")
D.add_edge("Austin", "Austin")

T = transitive_closure(D)

for e in D.edges(): print(e)
for n in D.nodes(): print(n)

def show(H):
    nx.draw(H, with_labels=True, font_weight='bold')
    plt.show()
#Use nx.to_numpy_matrix instead of nx.adjacency_matrix

# M = nx.adjacency_matrix(D)
# MT = nx.adjacency_matrix(T)
M = nx.to_numpy_matrix(D)
MT = nx.to_numpy_matrix(T)
M2 = M@M

def mPower(M, k): #M is numpy matrix
    assert k >= 1
    P = M
    for _ in range(k):
       P = P @ M
    return P

def tc(M):
    #compute transitive closure
    pass

D1 = nx.DiGraph(M)
D2 = nx.DiGraph(M2)

print('Matrix for Original\n', M)
N = nx.to_numpy_array(D,dtype=int)
print('np_array for Original\n', N)
print('\nMatrix for Transitive Closure\n', MT)
N2 = nx.to_numpy_array(T,dtype=int)
print('np_array for Transitive Closure\n', N2)

show(D) #can use D, T, and numpy matrix power operation
show(T)
show(T)