• Nov 18, 2022 •AustinLeath
0 likes • 14 views
# question3.py from itertools import product V='∀' E='∃' def tt(f,n) : xss=product((0,1),repeat=n) print('function:',f.__name__) for xs in xss : print(*xs,':',int(f(*xs))) print('') # this is the logic for part A (p\/q\/r) /\ (p\/q\/~r) /\ (p\/~q\/r) /\ (p\/~q\/~r) /\ (~p\/q\/r) /\ (~p\/q\/~r) /\ (~p\/~q\/r) /\ (~p\/~q\/~r) def parta(p,q,r) : a=(p or q or r) and (p or q or not r) and (p or not q or r)and (p or not q or not r) b=(not p or q or r ) and (not p or q or not r) and (not p or not q or r) and (not p or not q or not r) c= a and b return c def partb(p,q,r) : a=(p or q and r) and (p or not q or not r) and (p or not q or not r)and (p or q or not r) b=(not p or q or r ) and (not p or q or not r) and (not p or not q or r) and (not p or not q or not r) c= a and b return c print("part A:") tt(parta,3) print("part B:") tt(partb,3)
• Apr 21, 2023 •sebastianagauyao2002-61a8
0 likes • 4 views
print("hellur")
• Jun 1, 2023 •CodeCatch
bytes_data = b'Hello, World!' string_data = bytes_data.decode('utf-8') print("String:", string_data)
• May 31, 2023 •CodeCatch
0 likes • 1 view
# Function to multiply two matrices def multiply_matrices(matrix1, matrix2): # Check if the matrices can be multiplied if len(matrix1[0]) != len(matrix2): print("Error: The number of columns in the first matrix must be equal to the number of rows in the second matrix.") return None # Create the result matrix filled with zeros result = [[0 for _ in range(len(matrix2[0]))] for _ in range(len(matrix1))] # Perform matrix multiplication for i in range(len(matrix1)): for j in range(len(matrix2[0])): for k in range(len(matrix2)): result[i][j] += matrix1[i][k] * matrix2[k][j] return result # Example matrices matrix1 = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] matrix2 = [[10, 11], [12, 13], [14, 15]] # Multiply the matrices result_matrix = multiply_matrices(matrix1, matrix2) # Display the result if result_matrix is not None: print("Result:") for row in result_matrix: print(row)
• Nov 19, 2022 •CodeCatch
def print_pyramid_pattern(n): # outer loop to handle number of rows # n in this case for i in range(0, n): # inner loop to handle number of columns # values changing acc. to outer loop for j in range(0, i+1): # printing stars print("* ",end="") # ending line after each row print("\r") print_pyramid_pattern(10)
0 likes • 6 views
""" Binary Search Algorithm ---------------------------------------- """ #iterative implementation of binary search in Python def binary_search(a_list, item): """Performs iterative binary search to find the position of an integer in a given, sorted, list. a_list -- sorted list of integers item -- integer you are searching for the position of """ first = 0 last = len(a_list) - 1 while first <= last: i = (first + last) / 2 if a_list[i] == item: return ' found at position '.format(item=item, i=i) elif a_list[i] > item: last = i - 1 elif a_list[i] < item: first = i + 1 else: return ' not found in the list'.format(item=item) #recursive implementation of binary search in Python def binary_search_recursive(a_list, item): """Performs recursive binary search of an integer in a given, sorted, list. a_list -- sorted list of integers item -- integer you are searching for the position of """ first = 0 last = len(a_list) - 1 if len(a_list) == 0: return ' was not found in the list'.format(item=item) else: i = (first + last) // 2 if item == a_list[i]: return ' found'.format(item=item) else: if a_list[i] < item: return binary_search_recursive(a_list[i+1:], item) else: return binary_search_recursive(a_list[:i], item)