Connect to MYSQL and create a database
0 likes • Nov 19, 2022
Python
Loading...
More Python Posts
#You are given a two-digit integer n. Return the sum of its digits.#Example#For n = 29 the output should be solution (n) = 11def solution(n):return (n//10 + n%10)
#SetsU = {0,1,2,3,4,5,6,7,8,9}P = {1,2,3,4}Q = {4,5,6}R = {3,4,6,8,9}def set2bits(xs,us) :bs=[]for x in us :if x in xs :bs.append(1)else:bs.append(0)assert len(us) == len(bs)return bsdef union(set1,set2) :finalSet = set()bitList1 = set2bits(set1, U)bitList2 = set2bits(set2, U)for i in range(len(U)) :if(bitList1[i] or bitList2[i]) :finalSet.add(i)return finalSetdef intersection(set1,set2) :finalSet = set()bitList1 = set2bits(set1, U)bitList2 = set2bits(set2, U)for i in range(len(U)) :if(bitList1[i] and bitList2[i]) :finalSet.add(i)return finalSetdef compliment(set1) :finalSet = set()bitList = set2bits(set1, U)for i in range(len(U)) :if(not bitList[i]) :finalSet.add(i)return finalSetdef implication(a,b):return union(compliment(a), b)################################################################################################################# Problems 1-6 ###################################################################################################################################p \/ (q /\ r) = (p \/ q) /\ (p \/ r)def prob1():return union(P, intersection(Q,R)) == intersection(union(P,Q), union(P,R))#p /\ (q \/ r) = (p /\ q) \/ (p /\ r)def prob2():return intersection(P, union(Q,R)) == union(intersection(P,Q), intersection(P,R))#~(p /\ q) = ~p \/ ~qdef prob3():return compliment(intersection(P,R)) == union(compliment(P), compliment(R))#~(p \/ q) = ~p /\ ~qdef prob4():return compliment(union(P,Q)) == intersection(compliment(P), compliment(Q))#(p=>q) = (~q => ~p)def prob5():return implication(P,Q) == implication(compliment(Q), compliment(P))#(p => q) /\ (q => r) => (p => r)def prob6():return implication(intersection(implication(P,Q), implication(Q,R)), implication(P,R))print("Problem 1: ", prob1())print("Problem 2: ", prob2())print("Problem 3: ", prob3())print("Problem 4: ", prob4())print("Problem 5: ", prob5())print("Problem 6: ", prob6())'''Problem 1: TrueProblem 2: TrueProblem 3: TrueProblem 4: TrueProblem 5: TrueProblem 6: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}'''
# Python program for implementation of Bogo Sortimport random# Sorts array a[0..n-1] using Bogo sortdef bogoSort(a):n = len(a)while (is_sorted(a)== False):shuffle(a)# To check if array is sorted or notdef is_sorted(a):n = len(a)for i in range(0, n-1):if (a[i] > a[i+1] ):return Falsereturn True# To generate permuatation of the arraydef shuffle(a):n = len(a)for i in range (0,n):r = random.randint(0,n-1)a[i], a[r] = a[r], a[i]# Driver code to test abovea = [3, 2, 4, 1, 0, 5]bogoSort(a)print("Sorted array :")for i in range(len(a)):print ("%d" %a[i]),
list_1 = [1,2,3,4,5,6,7,8,9]cubed = map(lambda x: pow(x,3), list_1)print(list(cubed))#Results#[1, 8, 27, 64, 125, 216, 343, 512, 729]
# Python program for Plotting Fibonacci# spiral fractal using Turtleimport turtleimport mathdef fiboPlot(n):a = 0b = 1square_a = asquare_b = b# Setting the colour of the plotting pen to bluex.pencolor("blue")# Drawing the first squarex.forward(b * factor)x.left(90)x.forward(b * factor)x.left(90)x.forward(b * factor)x.left(90)x.forward(b * factor)# Proceeding in the Fibonacci Seriestemp = square_bsquare_b = square_b + square_asquare_a = temp# Drawing the rest of the squaresfor i in range(1, n):x.backward(square_a * factor)x.right(90)x.forward(square_b * factor)x.left(90)x.forward(square_b * factor)x.left(90)x.forward(square_b * factor)# Proceeding in the Fibonacci Seriestemp = square_bsquare_b = square_b + square_asquare_a = temp# Bringing the pen to starting point of the spiral plotx.penup()x.setposition(factor, 0)x.seth(0)x.pendown()# Setting the colour of the plotting pen to redx.pencolor("red")# Fibonacci Spiral Plotx.left(90)for i in range(n):print(b)fdwd = math.pi * b * factor / 2fdwd /= 90for j in range(90):x.forward(fdwd)x.left(1)temp = aa = bb = temp + b# Here 'factor' signifies the multiplicative# factor which expands or shrinks the scale# of the plot by a certain factor.factor = 1# Taking Input for the number of# Iterations our Algorithm will runn = int(input('Enter the number of iterations (must be > 1): '))# Plotting the Fibonacci Spiral Fractal# and printing the corresponding Fibonacci Numberif n > 0:print("Fibonacci series for", n, "elements :")x = turtle.Turtle()x.speed(100)fiboPlot(n)turtle.done()else:print("Number of iterations must be > 0")
# Function to check Armstrong numberdef is_armstrong_number(number):# Convert number to string to iterate over its digitsnum_str = str(number)# Calculate the sum of the cubes of each digitdigit_sum = sum(int(digit) ** len(num_str) for digit in num_str)# Compare the sum with the original numberif digit_sum == number:return Trueelse:return False# Prompt user for a numbernumber = int(input("Enter a number: "))# Check if the number is an Armstrong numberif is_armstrong_number(number):print(number, "is an Armstrong number.")else:print(number, "is not an Armstrong number.")