Skip to main content

Connect to MYSQL and create a database

0 likes • Nov 19, 2022
Python
Loading...
Download

More Python Posts

two-digit integer

wabdelh
0 likes • Feb 26, 2023
Python
#You are given a two-digit integer n. Return the sum of its digits.
#Example
#For n = 29 the output should be solution (n) = 11
def solution(n):
return (n//10 + n%10)

Using logic with sets

AustinLeath
0 likes • Nov 18, 2022
Python
#Sets
U = {0,1,2,3,4,5,6,7,8,9}
P = {1,2,3,4}
Q = {4,5,6}
R = {3,4,6,8,9}
def set2bits(xs,us) :
bs=[]
for x in us :
if x in xs :
bs.append(1)
else:
bs.append(0)
assert len(us) == len(bs)
return bs
def union(set1,set2) :
finalSet = set()
bitList1 = set2bits(set1, U)
bitList2 = set2bits(set2, U)
for i in range(len(U)) :
if(bitList1[i] or bitList2[i]) :
finalSet.add(i)
return finalSet
def intersection(set1,set2) :
finalSet = set()
bitList1 = set2bits(set1, U)
bitList2 = set2bits(set2, U)
for i in range(len(U)) :
if(bitList1[i] and bitList2[i]) :
finalSet.add(i)
return finalSet
def compliment(set1) :
finalSet = set()
bitList = set2bits(set1, U)
for i in range(len(U)) :
if(not bitList[i]) :
finalSet.add(i)
return finalSet
def implication(a,b):
return union(compliment(a), b)
###########################################################################################
###################### Problems 1-6 #######################################
###########################################################################################
#p \/ (q /\ r) = (p \/ q) /\ (p \/ r)
def prob1():
return union(P, intersection(Q,R)) == intersection(union(P,Q), union(P,R))
#p /\ (q \/ r) = (p /\ q) \/ (p /\ r)
def prob2():
return intersection(P, union(Q,R)) == union(intersection(P,Q), intersection(P,R))
#~(p /\ q) = ~p \/ ~q
def prob3():
return compliment(intersection(P,R)) == union(compliment(P), compliment(R))
#~(p \/ q) = ~p /\ ~q
def prob4():
return compliment(union(P,Q)) == intersection(compliment(P), compliment(Q))
#(p=>q) = (~q => ~p)
def prob5():
return implication(P,Q) == implication(compliment(Q), compliment(P))
#(p => q) /\ (q => r) => (p => r)
def prob6():
return implication(intersection(implication(P,Q), implication(Q,R)), implication(P,R))
print("Problem 1: ", prob1())
print("Problem 2: ", prob2())
print("Problem 3: ", prob3())
print("Problem 4: ", prob4())
print("Problem 5: ", prob5())
print("Problem 6: ", prob6())
'''
Problem 1: True
Problem 2: True
Problem 3: True
Problem 4: True
Problem 5: True
Problem 6: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
'''

Bogo Sort

CodeCatch
0 likes • Nov 19, 2022
Python
# Python program for implementation of Bogo Sort
import random
# Sorts array a[0..n-1] using Bogo sort
def bogoSort(a):
n = len(a)
while (is_sorted(a)== False):
shuffle(a)
# To check if array is sorted or not
def is_sorted(a):
n = len(a)
for i in range(0, n-1):
if (a[i] > a[i+1] ):
return False
return True
# To generate permuatation of the array
def shuffle(a):
n = len(a)
for i in range (0,n):
r = random.randint(0,n-1)
a[i], a[r] = a[r], a[i]
# Driver code to test above
a = [3, 2, 4, 1, 0, 5]
bogoSort(a)
print("Sorted array :")
for i in range(len(a)):
print ("%d" %a[i]),

lambda example

CodeCatch
0 likes • Nov 19, 2022
Python
list_1 = [1,2,3,4,5,6,7,8,9]
cubed = map(lambda x: pow(x,3), list_1)
print(list(cubed))
#Results
#[1, 8, 27, 64, 125, 216, 343, 512, 729]

Plotting Fibonacci

CodeCatch
0 likes • Nov 19, 2022
Python
# Python program for Plotting Fibonacci
# spiral fractal using Turtle
import turtle
import math
def fiboPlot(n):
a = 0
b = 1
square_a = a
square_b = b
# Setting the colour of the plotting pen to blue
x.pencolor("blue")
# Drawing the first square
x.forward(b * factor)
x.left(90)
x.forward(b * factor)
x.left(90)
x.forward(b * factor)
x.left(90)
x.forward(b * factor)
# Proceeding in the Fibonacci Series
temp = square_b
square_b = square_b + square_a
square_a = temp
# Drawing the rest of the squares
for i in range(1, n):
x.backward(square_a * factor)
x.right(90)
x.forward(square_b * factor)
x.left(90)
x.forward(square_b * factor)
x.left(90)
x.forward(square_b * factor)
# Proceeding in the Fibonacci Series
temp = square_b
square_b = square_b + square_a
square_a = temp
# Bringing the pen to starting point of the spiral plot
x.penup()
x.setposition(factor, 0)
x.seth(0)
x.pendown()
# Setting the colour of the plotting pen to red
x.pencolor("red")
# Fibonacci Spiral Plot
x.left(90)
for i in range(n):
print(b)
fdwd = math.pi * b * factor / 2
fdwd /= 90
for j in range(90):
x.forward(fdwd)
x.left(1)
temp = a
a = b
b = temp + b
# Here 'factor' signifies the multiplicative
# factor which expands or shrinks the scale
# of the plot by a certain factor.
factor = 1
# Taking Input for the number of
# Iterations our Algorithm will run
n = int(input('Enter the number of iterations (must be > 1): '))
# Plotting the Fibonacci Spiral Fractal
# and printing the corresponding Fibonacci Number
if n > 0:
print("Fibonacci series for", n, "elements :")
x = turtle.Turtle()
x.speed(100)
fiboPlot(n)
turtle.done()
else:
print("Number of iterations must be > 0")

Check Armstrong Number

CodeCatch
0 likes • May 31, 2023
Python
# Function to check Armstrong number
def is_armstrong_number(number):
# Convert number to string to iterate over its digits
num_str = str(number)
# Calculate the sum of the cubes of each digit
digit_sum = sum(int(digit) ** len(num_str) for digit in num_str)
# Compare the sum with the original number
if digit_sum == number:
return True
else:
return False
# Prompt user for a number
number = int(input("Enter a number: "))
# Check if the number is an Armstrong number
if is_armstrong_number(number):
print(number, "is an Armstrong number.")
else:
print(number, "is not an Armstrong number.")