• Nov 19, 2022 •CodeCatch
0 likes • 3 views
# Python program for Plotting Fibonacci # spiral fractal using Turtle import turtle import math def fiboPlot(n): a = 0 b = 1 square_a = a square_b = b # Setting the colour of the plotting pen to blue x.pencolor("blue") # Drawing the first square x.forward(b * factor) x.left(90) x.forward(b * factor) x.left(90) x.forward(b * factor) x.left(90) x.forward(b * factor) # Proceeding in the Fibonacci Series temp = square_b square_b = square_b + square_a square_a = temp # Drawing the rest of the squares for i in range(1, n): x.backward(square_a * factor) x.right(90) x.forward(square_b * factor) x.left(90) x.forward(square_b * factor) x.left(90) x.forward(square_b * factor) # Proceeding in the Fibonacci Series temp = square_b square_b = square_b + square_a square_a = temp # Bringing the pen to starting point of the spiral plot x.penup() x.setposition(factor, 0) x.seth(0) x.pendown() # Setting the colour of the plotting pen to red x.pencolor("red") # Fibonacci Spiral Plot x.left(90) for i in range(n): print(b) fdwd = math.pi * b * factor / 2 fdwd /= 90 for j in range(90): x.forward(fdwd) x.left(1) temp = a a = b b = temp + b # Here 'factor' signifies the multiplicative # factor which expands or shrinks the scale # of the plot by a certain factor. factor = 1 # Taking Input for the number of # Iterations our Algorithm will run n = int(input('Enter the number of iterations (must be > 1): ')) # Plotting the Fibonacci Spiral Fractal # and printing the corresponding Fibonacci Number if n > 0: print("Fibonacci series for", n, "elements :") x = turtle.Turtle() x.speed(100) fiboPlot(n) turtle.done() else: print("Number of iterations must be > 0")
• Apr 15, 2021 •NoahEaton
0 likes • 2 views
import anytree as at import random as rm # Generate a tree with node_count many nodes. Each has a number key that shows when it was made and a randomly selected color, red or white. def random_tree(node_count): # Generates the list of nodes nodes = [] for i in range(node_count): test = rm.randint(1,2) if test == 1: nodes.append(at.Node(str(i),color="white")) else: nodes.append(at.Node(str(i),color="red")) #Creates the various main branches for i in range(node_count): for j in range(i, len(nodes)): test = rm.randint(1,len(nodes)) if test == 1 and nodes[j].parent == None and (not nodes[i] == nodes[j]): nodes[j].parent = nodes[i] #Collects all the main branches into a single tree with the first node being the root for i in range(1, node_count): if nodes[i].parent == None and (not nodes[i] == nodes[0]): nodes[i].parent = nodes[0] return nodes[0]
• May 31, 2023 •CodeCatch
0 likes • 0 views
# Function to check Armstrong number def is_armstrong_number(number): # Convert number to string to iterate over its digits num_str = str(number) # Calculate the sum of the cubes of each digit digit_sum = sum(int(digit) ** len(num_str) for digit in num_str) # Compare the sum with the original number if digit_sum == number: return True else: return False # Prompt user for a number number = int(input("Enter a number: ")) # Check if the number is an Armstrong number if is_armstrong_number(number): print(number, "is an Armstrong number.") else: print(number, "is not an Armstrong number.")
1 like • 4 views
def hex_to_rgb(hex): return tuple(int(hex[i:i+2], 16) for i in (0, 2, 4)) hex_to_rgb('FFA501') # (255, 165, 1)
0 likes • 1 view
def key_of_min(d): return min(d, key = d.get) key_of_min({'a':4, 'b':0, 'c':13}) # b
def print_x_pattern(size): i,j = 0,size - 1 while j >= 0 and i < size: initial_spaces = ' '*min(i,j) middle_spaces = ' '*(abs(i - j) - 1) final_spaces = ' '*(size - 1 - max(i,j)) if j == i: print(initial_spaces + '*' + final_spaces) else: print(initial_spaces + '*' + middle_spaces + '*' + final_spaces) i += 1 j -= 1 print_x_pattern(7)