Loading...
More Python Posts
#SetsU = {0,1,2,3,4,5,6,7,8,9}P = {1,2,3,4}Q = {4,5,6}R = {3,4,6,8,9}def set2bits(xs,us) :bs=[]for x in us :if x in xs :bs.append(1)else:bs.append(0)assert len(us) == len(bs)return bsdef union(set1,set2) :finalSet = set()bitList1 = set2bits(set1, U)bitList2 = set2bits(set2, U)for i in range(len(U)) :if(bitList1[i] or bitList2[i]) :finalSet.add(i)return finalSetdef intersection(set1,set2) :finalSet = set()bitList1 = set2bits(set1, U)bitList2 = set2bits(set2, U)for i in range(len(U)) :if(bitList1[i] and bitList2[i]) :finalSet.add(i)return finalSetdef compliment(set1) :finalSet = set()bitList = set2bits(set1, U)for i in range(len(U)) :if(not bitList[i]) :finalSet.add(i)return finalSetdef implication(a,b):return union(compliment(a), b)################################################################################################################# Problems 1-6 ###################################################################################################################################p \/ (q /\ r) = (p \/ q) /\ (p \/ r)def prob1():return union(P, intersection(Q,R)) == intersection(union(P,Q), union(P,R))#p /\ (q \/ r) = (p /\ q) \/ (p /\ r)def prob2():return intersection(P, union(Q,R)) == union(intersection(P,Q), intersection(P,R))#~(p /\ q) = ~p \/ ~qdef prob3():return compliment(intersection(P,R)) == union(compliment(P), compliment(R))#~(p \/ q) = ~p /\ ~qdef prob4():return compliment(union(P,Q)) == intersection(compliment(P), compliment(Q))#(p=>q) = (~q => ~p)def prob5():return implication(P,Q) == implication(compliment(Q), compliment(P))#(p => q) /\ (q => r) => (p => r)def prob6():return implication(intersection(implication(P,Q), implication(Q,R)), implication(P,R))print("Problem 1: ", prob1())print("Problem 2: ", prob2())print("Problem 3: ", prob3())print("Problem 4: ", prob4())print("Problem 5: ", prob5())print("Problem 6: ", prob6())'''Problem 1: TrueProblem 2: TrueProblem 3: TrueProblem 4: TrueProblem 5: TrueProblem 6: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}'''
print(“Hello World”)
import mathdef factorial(n):print(math.factorial(n))return (math.factorial(n))factorial(5)factorial(10)factorial(15)
from math import pidef rads_to_degrees(rad):return (rad * 180.0) / pirads_to_degrees(pi / 2) # 90.0
# Python program for Bitonic Sort. Note that this program# works only when size of input is a power of 2.# The parameter dir indicates the sorting direction, ASCENDING# or DESCENDING; if (a[i] > a[j]) agrees with the direction,# then a[i] and a[j] are interchanged.*/def compAndSwap(a, i, j, dire):if (dire==1 and a[i] > a[j]) or (dire==0 and a[i] > a[j]):a[i],a[j] = a[j],a[i]# It recursively sorts a bitonic sequence in ascending order,# if dir = 1, and in descending order otherwise (means dir=0).# The sequence to be sorted starts at index position low,# the parameter cnt is the number of elements to be sorted.def bitonicMerge(a, low, cnt, dire):if cnt > 1:k = cnt/2for i in range(low , low+k):compAndSwap(a, i, i+k, dire)bitonicMerge(a, low, k, dire)bitonicMerge(a, low+k, k, dire)# This funcion first produces a bitonic sequence by recursively# sorting its two halves in opposite sorting orders, and then# calls bitonicMerge to make them in the same orderdef bitonicSort(a, low, cnt,dire):if cnt > 1:k = cnt/2bitonicSort(a, low, k, 1)bitonicSort(a, low+k, k, 0)bitonicMerge(a, low, cnt, dire)# Caller of bitonicSort for sorting the entire array of length N# in ASCENDING orderdef sort(a,N, up):bitonicSort(a,0, N, up)# Driver code to test abovea = [3, 7, 4, 8, 6, 2, 1, 5]n = len(a)up = 1sort(a, n, up)print ("\n\nSorted array is")for i in range(n):print("%d" %a[i]),
import itertoolsdef compute_permutations(string):# Generate all permutations of the stringpermutations = itertools.permutations(string)# Convert each permutation tuple to a stringpermutations = [''.join(permutation) for permutation in permutations]return permutations# Prompt the user for a stringstring = input("Enter a string: ")# Compute permutationspermutations = compute_permutations(string)# Display the permutationsprint("Permutations:")for permutation in permutations:print(permutation)