Loading...
More Python Posts
def key_of_min(d):return min(d, key = d.get)key_of_min({'a':4, 'b':0, 'c':13}) # b
# Function to multiply two matricesdef multiply_matrices(matrix1, matrix2):# Check if the matrices can be multipliedif len(matrix1[0]) != len(matrix2):print("Error: The number of columns in the first matrix must be equal to the number of rows in the second matrix.")return None# Create the result matrix filled with zerosresult = [[0 for _ in range(len(matrix2[0]))] for _ in range(len(matrix1))]# Perform matrix multiplicationfor i in range(len(matrix1)):for j in range(len(matrix2[0])):for k in range(len(matrix2)):result[i][j] += matrix1[i][k] * matrix2[k][j]return result# Example matricesmatrix1 = [[1, 2, 3],[4, 5, 6],[7, 8, 9]]matrix2 = [[10, 11],[12, 13],[14, 15]]# Multiply the matricesresult_matrix = multiply_matrices(matrix1, matrix2)# Display the resultif result_matrix is not None:print("Result:")for row in result_matrix:print(row)
""" Binary Search Algorithm----------------------------------------"""#iterative implementation of binary search in Pythondef binary_search(a_list, item):"""Performs iterative binary search to find the position of an integer in a given, sorted, list.a_list -- sorted list of integersitem -- integer you are searching for the position of"""first = 0last = len(a_list) - 1while first <= last:i = (first + last) / 2if a_list[i] == item:return ' found at position '.format(item=item, i=i)elif a_list[i] > item:last = i - 1elif a_list[i] < item:first = i + 1else:return ' not found in the list'.format(item=item)#recursive implementation of binary search in Pythondef binary_search_recursive(a_list, item):"""Performs recursive binary search of an integer in a given, sorted, list.a_list -- sorted list of integersitem -- integer you are searching for the position of"""first = 0last = len(a_list) - 1if len(a_list) == 0:return ' was not found in the list'.format(item=item)else:i = (first + last) // 2if item == a_list[i]:return ' found'.format(item=item)else:if a_list[i] < item:return binary_search_recursive(a_list[i+1:], item)else:return binary_search_recursive(a_list[:i], item)
# @return a list of strings, [s1, s2]def letterCombinations(self, digits):if '' == digits: return []kvmaps = {'2': 'abc','3': 'def','4': 'ghi','5': 'jkl','6': 'mno','7': 'pqrs','8': 'tuv','9': 'wxyz'}return reduce(lambda acc, digit: [x + y for x in acc for y in kvmaps[digit]], digits, [''])
magnitude = lambda bits: 1_000_000_000_000_000_000 % (2 ** bits)sign = lambda bits: -1 ** (1_000_000_000_000_000_000 // (2 ** bits))print("64 bit sum:", magnitude(64) * sign(64))print("32 bit sum:", magnitude(32) * sign(32))print("16 bit sum:", magnitude(16) * sign(16))
#84 48 13 20 61 20 33 97 34 45 6 63 71 66 24 57 92 74 6 25 51 86 48 15 64 55 77 30 56 53 37 99 9 59 57 61 30 97 50 63 59 62 39 32 34 4 96 51 8 86 10 62 16 55 81 88 71 25 27 78 79 88 92 50 16 8 67 82 67 37 84 3 33 4 78 98 39 64 98 94 24 82 45 3 53 74 96 9 10 94 13 79 15 27 56 66 32 81 77# xor a list of integers to find the lonely integerres = a[0]for i in range(1,len(a)):res = res ^ a[i]