Skip to main content
Loading...

More Python Posts

#Sets
U = {0,1,2,3,4,5,6,7,8,9}
P = {1,2,3,4}
Q = {4,5,6}
R = {3,4,6,8,9}

def set2bits(xs,us) :
    bs=[]
    for x in us :
        if x in xs :
            bs.append(1)
        else:
            bs.append(0)
    assert len(us) == len(bs)
    return bs

def union(set1,set2) :
    finalSet = set()
    bitList1 = set2bits(set1, U)
    bitList2 = set2bits(set2, U)

    for i in range(len(U)) :
        if(bitList1[i] or bitList2[i]) :
            finalSet.add(i)

    return finalSet

def intersection(set1,set2) :
    finalSet = set()
    bitList1 = set2bits(set1, U)
    bitList2 = set2bits(set2, U)

    for i in range(len(U)) :
        if(bitList1[i] and bitList2[i]) :
            finalSet.add(i)

    return finalSet

def compliment(set1) :
    finalSet = set()
    bitList = set2bits(set1, U)

    for i in range(len(U)) :
        if(not bitList[i]) :
            finalSet.add(i)

    return finalSet

def implication(a,b):
    return union(compliment(a), b)

###########################################################################################
######################         Problems 1-6         #######################################
###########################################################################################

#p \/ (q /\ r) = (p \/ q) /\ (p \/ r)
def prob1():
    return union(P, intersection(Q,R)) == intersection(union(P,Q), union(P,R))

#p /\ (q \/ r) = (p /\ q) \/ (p /\ r)
def prob2():
    return intersection(P, union(Q,R)) == union(intersection(P,Q), intersection(P,R))

#~(p /\ q) = ~p \/ ~q
def prob3():
    return compliment(intersection(P,R)) == union(compliment(P), compliment(R))

#~(p \/ q) = ~p /\ ~q
def prob4():
    return compliment(union(P,Q)) == intersection(compliment(P), compliment(Q))

#(p=>q) = (~q => ~p)
def prob5():
    return implication(P,Q) == implication(compliment(Q), compliment(P))

#(p => q) /\ (q => r)  =>  (p => r)
def prob6():
    return implication(intersection(implication(P,Q), implication(Q,R)), implication(P,R))


print("Problem 1: ", prob1())
print("Problem 2: ", prob2())
print("Problem 3: ", prob3())
print("Problem 4: ", prob4())
print("Problem 5: ", prob5())
print("Problem 6: ", prob6())

'''
Problem 1:  True
Problem 2:  True
Problem 3:  True
Problem 4:  True
Problem 5:  True
Problem 6:  {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
'''
# Python program for Plotting Fibonacci 
# spiral fractal using Turtle 
import turtle 
import math 
  
def fiboPlot(n): 
    a = 0
    b = 1
    square_a = a 
    square_b = b 
  
    # Setting the colour of the plotting pen to blue 
    x.pencolor("blue") 
  
    # Drawing the first square 
    x.forward(b * factor) 
    x.left(90) 
    x.forward(b * factor) 
    x.left(90) 
    x.forward(b * factor) 
    x.left(90) 
    x.forward(b * factor) 
  
    # Proceeding in the Fibonacci Series 
    temp = square_b 
    square_b = square_b + square_a 
    square_a = temp 
      
    # Drawing the rest of the squares 
    for i in range(1, n): 
        x.backward(square_a * factor) 
        x.right(90) 
        x.forward(square_b * factor) 
        x.left(90) 
        x.forward(square_b * factor) 
        x.left(90) 
        x.forward(square_b * factor) 
  
        # Proceeding in the Fibonacci Series 
        temp = square_b 
        square_b = square_b + square_a 
        square_a = temp 
  
    # Bringing the pen to starting point of the spiral plot 
    x.penup() 
    x.setposition(factor, 0) 
    x.seth(0) 
    x.pendown() 
  
    # Setting the colour of the plotting pen to red 
    x.pencolor("red") 
  
    # Fibonacci Spiral Plot 
    x.left(90) 
    for i in range(n): 
        print(b) 
        fdwd = math.pi * b * factor / 2
        fdwd /= 90
        for j in range(90): 
            x.forward(fdwd) 
            x.left(1) 
        temp = a 
        a = b 
        b = temp + b 
  
  
# Here 'factor' signifies the multiplicative  
# factor which expands or shrinks the scale 
# of the plot by a certain factor. 
factor = 1
  
# Taking Input for the number of  
# Iterations our Algorithm will run 
n = int(input('Enter the number of iterations (must be > 1): ')) 
  
# Plotting the Fibonacci Spiral Fractal  
# and printing the corresponding Fibonacci Number 
if n > 0: 
    print("Fibonacci series for", n, "elements :") 
    x = turtle.Turtle() 
    x.speed(100) 
    fiboPlot(n) 
    turtle.done() 
else: 
    print("Number of iterations must be > 0")