Skip to main content

Calculator

Nov 19, 2022CodeCatch
Loading...

More Python Posts

Selection sort

Nov 19, 2022CodeCatch

0 likes • 0 views

# Python program for implementation of Selection
# Sort
import sys
A = [64, 25, 12, 22, 11]
# Traverse through all array elements
for i in range(len(A)):
# Find the minimum element in remaining
# unsorted array
min_idx = i
for j in range(i+1, len(A)):
if A[min_idx] > A[j]:
min_idx = j
# Swap the found minimum element with
# the first element
A[i], A[min_idx] = A[min_idx], A[i]
# Driver code to test above
print ("Sorted array")
for i in range(len(A)):
print("%d" %A[i]),

Untitled

Sep 14, 2024rgannedo-6205

0 likes • 4 views

# Python binary search function
def binary_search(arr, target):
left = 0
right = len(arr) - 1
while left <= right:
mid = (left + right) // 2
if arr[mid] == target:
return mid
elif arr[mid] < target:
left = mid + 1
else:
right = mid - 1
return -1
# Usage
arr = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
target = 7
result = binary_search(arr, target)
if result != -1:
print(f"Element is present at index {result}")
else:
print("Element is not present in array")

return maximum

Nov 19, 2022CodeCatch

0 likes • 0 views

def max_n(lst, n = 1):
return sorted(lst, reverse = True)[:n]
max_n([1, 2, 3]) # [3]
max_n([1, 2, 3], 2) # [3, 2]

return multiple values from a function

Jun 1, 2023CodeCatch

0 likes • 2 views

def calculate_values():
value1 = 10
value2 = 20
return value1, value2
result1, result2 = calculate_values()
print("Result 1:", result1)
print("Result 2:", result2)

Read Dataset from excel file

Oct 7, 2022KETRICK

0 likes • 0 views

import pandas as pd
x = pd.read_excel(FILE_NAME)
print(x)

Topological sort

Nov 19, 2022CodeCatch

0 likes • 0 views

#Python program to print topological sorting of a DAG
from collections import defaultdict
#Class to represent a graph
class Graph:
def __init__(self,vertices):
self.graph = defaultdict(list) #dictionary containing adjacency List
self.V = vertices #No. of vertices
# function to add an edge to graph
def addEdge(self,u,v):
self.graph[u].append(v)
# A recursive function used by topologicalSort
def topologicalSortUtil(self,v,visited,stack):
# Mark the current node as visited.
visited[v] = True
# Recur for all the vertices adjacent to this vertex
for i in self.graph[v]:
if visited[i] == False:
self.topologicalSortUtil(i,visited,stack)
# Push current vertex to stack which stores result
stack.insert(0,v)
# The function to do Topological Sort. It uses recursive
# topologicalSortUtil()
def topologicalSort(self):
# Mark all the vertices as not visited
visited = [False]*self.V
stack =[]
# Call the recursive helper function to store Topological
# Sort starting from all vertices one by one
for i in range(self.V):
if visited[i] == False:
self.topologicalSortUtil(i,visited,stack)
# Print contents of stack
print(stack)
g= Graph(6)
g.addEdge(5, 2);
g.addEdge(5, 0);
g.addEdge(4, 0);
g.addEdge(4, 1);
g.addEdge(2, 3);
g.addEdge(3, 1);
print("Following is a Topological Sort of the given graph")
g.topologicalSort()