Skip to main content

Input 2D Matrix

0 likes • Nov 19, 2022
Python
Loading...
Download

More Python Posts

key of minimum value

CodeCatch
0 likes • Nov 19, 2022
Python
def key_of_min(d):
return min(d, key = d.get)
key_of_min({'a':4, 'b':0, 'c':13}) # b
import copy
begining = [False,False,False,False,False,None,True,True,True,True,True]
#False = black True = white
its = [0]
def swap(layout, step):
layoutCopy = copy.deepcopy(layout)
layoutCopy[(step[0]+step[1])], layoutCopy[step[1]] = layoutCopy[step[1]], layoutCopy[(step[0]+step[1])]
return layoutCopy
def isSolved(layout):
for i in range(len(layout)):
if(layout[i] == False):
return (i >= (len(layout)/2))
def recurse(layout, its, steps = []):
if isSolved(layout):
its[0] += 1
print(layout,list(x[0] for x in steps))
return
step = None
for i in range(len(layout)):
if(layout[i] == None):
if(i >= 1): #If the empty space could have something to the left
if(layout[i - 1] == False):
step = [-1,i]
recurse(swap(layout,step), its, (steps+[step]))
if(i > 1): #If the empty space could have something 2 to the left
if(layout[i - 2] == False):
step = [-2,i]
recurse(swap(layout,step), its, (steps+[step]))
if(i < (len(layout)-1)): #If the empty space could have something to the right
if(layout[i + 1] == True):
step = [1,i]
recurse(swap(layout,step), its, (steps+[step]))
if(i < (len(layout)-2)): #If the empty space could have something to the right
if(layout[i + 2] == True):
step = [2,i]
recurse(swap(layout,step), its, (steps+[step]))
its[0] += 1
#return None
recurse(begining,its,[])
print(its[0])

Radix sort

CodeCatch
0 likes • Nov 19, 2022
Python
# Python program for implementation of Radix Sort
# A function to do counting sort of arr[] according to
# the digit represented by exp.
def countingSort(arr, exp1):
n = len(arr)
# The output array elements that will have sorted arr
output = [0] * (n)
# initialize count array as 0
count = [0] * (10)
# Store count of occurrences in count[]
for i in range(0, n):
index = (arr[i]/exp1)
count[int((index)%10)] += 1
# Change count[i] so that count[i] now contains actual
# position of this digit in output array
for i in range(1,10):
count[i] += count[i-1]
# Build the output array
i = n-1
while i>=0:
index = (arr[i]/exp1)
output[ count[ int((index)%10) ] - 1] = arr[i]
count[int((index)%10)] -= 1
i -= 1
# Copying the output array to arr[],
# so that arr now contains sorted numbers
i = 0
for i in range(0,len(arr)):
arr[i] = output[i]
# Method to do Radix Sort
def radixSort(arr):
# Find the maximum number to know number of digits
max1 = max(arr)
# Do counting sort for every digit. Note that instead
# of passing digit number, exp is passed. exp is 10^i
# where i is current digit number
exp = 1
while max1/exp > 0:
countingSort(arr,exp)
exp *= 10
# Driver code to test above
arr = [ 170, 45, 75, 90, 802, 24, 2, 66]
radixSort(arr)
for i in range(len(arr)):
print(arr[i]),

Bubble sort

CodeCatch
0 likes • Nov 19, 2022
Python
# Python program for implementation of Bubble Sort
def bubbleSort(arr):
n = len(arr)
# Traverse through all array elements
for i in range(n-1):
# range(n) also work but outer loop will repeat one time more than needed.
# Last i elements are already in place
for j in range(0, n-i-1):
# traverse the array from 0 to n-i-1
# Swap if the element found is greater
# than the next element
if arr[j] > arr[j+1] :
arr[j], arr[j+1] = arr[j+1], arr[j]
# Driver code to test above
arr = [64, 34, 25, 12, 22, 11, 90]
bubbleSort(arr)
print ("Sorted array is:")
for i in range(len(arr)):
print ("%d" %arr[i]),

Binary search algorithm

CodeCatch
0 likes • Nov 19, 2022
Python
""" Binary Search Algorithm
----------------------------------------
"""
#iterative implementation of binary search in Python
def binary_search(a_list, item):
"""Performs iterative binary search to find the position of an integer in a given, sorted, list.
a_list -- sorted list of integers
item -- integer you are searching for the position of
"""
first = 0
last = len(a_list) - 1
while first <= last:
i = (first + last) / 2
if a_list[i] == item:
return ' found at position '.format(item=item, i=i)
elif a_list[i] > item:
last = i - 1
elif a_list[i] < item:
first = i + 1
else:
return ' not found in the list'.format(item=item)
#recursive implementation of binary search in Python
def binary_search_recursive(a_list, item):
"""Performs recursive binary search of an integer in a given, sorted, list.
a_list -- sorted list of integers
item -- integer you are searching for the position of
"""
first = 0
last = len(a_list) - 1
if len(a_list) == 0:
return ' was not found in the list'.format(item=item)
else:
i = (first + last) // 2
if item == a_list[i]:
return ' found'.format(item=item)
else:
if a_list[i] < item:
return binary_search_recursive(a_list[i+1:], item)
else:
return binary_search_recursive(a_list[:i], item)

screencap.py

asnark
0 likes • Jan 23, 2021
Python
"""
Take screenshots at x interval - make a movie of doings on a computer.
"""
import time
from datetime import datetime
import ffmpeg
import pyautogui
while True:
epoch_time = int(time.time())
today = datetime.now().strftime("%Y_%m_%d")
filename = str(epoch_time) + ".png"
print("taking screenshot: {0}".format(filename))
myScreenshot = pyautogui.screenshot()
myScreenshot.save(today + "/" + filename)
time.sleep(5)
#
# and then tie it together with: https://github.com/kkroening/ffmpeg-python/blob/master/examples/README.md#assemble-video-from-sequence-of-frames
#
"""
import ffmpeg
(
ffmpeg
.input('./2021_01_22/*.png', pattern_type='glob', framerate=25)
.filter('deflicker', mode='pm', size=10)
.filter('scale', size='hd1080', force_original_aspect_ratio='increase')
.output('movie.mp4', crf=20, preset='slower', movflags='faststart', pix_fmt='yuv420p')
.run()
)
"""