• Nov 18, 2022 •AustinLeath
0 likes • 5 views
import itertools import string import time def guess_password(real): chars = string.ascii_lowercase + string.ascii_uppercase + string.digits + string.punctuation attempts = 0 for password_length in range(1, 9): for guess in itertools.product(chars, repeat=password_length): startTime = time.time() attempts += 1 guess = ''.join(guess) if guess == real: return 'password is {}. found in {} guesses.'.format(guess, attempts) loopTime = (time.time() - startTime); print(guess, attempts, loopTime) print("\nIt will take A REALLY LONG TIME to crack a long password. Try this out with a 3 or 4 letter password and see how this program works.\n") val = input("Enter a password you want to crack that is 9 characters or below: ") print(guess_password(val.lower()))
• Jul 24, 2024 •AustinLeath
0 likes • 3 views
from statistics import median, mean, mode def print_stats(array): print(array) print("median =", median(array)) print("mean =", mean(array)) print("mode =", mode(array)) print() print_stats([1, 2, 3, 3, 4]) print_stats([1, 2, 3, 3])
• Oct 7, 2022 •KETRICK
x[cat_var].isnull().sum().sort_values(ascending=False)
• Nov 19, 2022 •CodeCatch
0 likes • 6 views
""" Binary Search Algorithm ---------------------------------------- """ #iterative implementation of binary search in Python def binary_search(a_list, item): """Performs iterative binary search to find the position of an integer in a given, sorted, list. a_list -- sorted list of integers item -- integer you are searching for the position of """ first = 0 last = len(a_list) - 1 while first <= last: i = (first + last) / 2 if a_list[i] == item: return ' found at position '.format(item=item, i=i) elif a_list[i] > item: last = i - 1 elif a_list[i] < item: first = i + 1 else: return ' not found in the list'.format(item=item) #recursive implementation of binary search in Python def binary_search_recursive(a_list, item): """Performs recursive binary search of an integer in a given, sorted, list. a_list -- sorted list of integers item -- integer you are searching for the position of """ first = 0 last = len(a_list) - 1 if len(a_list) == 0: return ' was not found in the list'.format(item=item) else: i = (first + last) // 2 if item == a_list[i]: return ' found'.format(item=item) else: if a_list[i] < item: return binary_search_recursive(a_list[i+1:], item) else: return binary_search_recursive(a_list[:i], item)
0 likes • 0 views
from time import sleep def delay(fn, ms, *args): sleep(ms / 1000) return fn(*args) delay(lambda x: print(x), 1000, 'later') # prints 'later' after one second
# Given a number n, print all primes smaller than or equal to n. It is also given that n is a small number. # For example, if n is 10, the output should be “2, 3, 5, 7”. If n is 20, the output should be “2, 3, 5, 7, 11, 13, 17, 19”. # Python program to print all primes smaller than or equal to # n using Sieve of Eratosthenes def SieveOfEratosthenes(n): # Create a boolean array "prime[0..n]" and initialize # all entries it as true. A value in prime[i] will # finally be false if i is Not a prime, else true. prime = [True for i in range(n + 1)] p = 2 while (p * p <= n): # If prime[p] is not changed, then it is a prime if (prime[p] == True): # Update all multiples of p for i in range(p * 2, n + 1, p): prime[i] = False p += 1 prime[0]= False prime[1]= False # Print all prime numbers for p in range(n + 1): if prime[p]: print (p) # driver program if __name__=='__main__': n = 30 print("Following are the prime numbers smaller") print("than or equal to ", n) print("than or equal to ", n) SieveOfEratosthenes(n)