Skip to main content

UNT CSCE 2100 Assignment 6

Nov 18, 2022AustinLeath
Loading...

More Python Posts

Calculate the Area of a Triangle

May 31, 2023CodeCatch

0 likes • 0 views

# Prompt user for base and height
base = float(input("Enter the base of the triangle: "))
height = float(input("Enter the height of the triangle: "))
# Calculate the area
area = (base * height) / 2
# Display the result
print("The area of the triangle is:", area)

Using logic with sets

Nov 18, 2022AustinLeath

0 likes • 1 view

#Sets
U = {0,1,2,3,4,5,6,7,8,9}
P = {1,2,3,4}
Q = {4,5,6}
R = {3,4,6,8,9}
def set2bits(xs,us) :
bs=[]
for x in us :
if x in xs :
bs.append(1)
else:
bs.append(0)
assert len(us) == len(bs)
return bs
def union(set1,set2) :
finalSet = set()
bitList1 = set2bits(set1, U)
bitList2 = set2bits(set2, U)
for i in range(len(U)) :
if(bitList1[i] or bitList2[i]) :
finalSet.add(i)
return finalSet
def intersection(set1,set2) :
finalSet = set()
bitList1 = set2bits(set1, U)
bitList2 = set2bits(set2, U)
for i in range(len(U)) :
if(bitList1[i] and bitList2[i]) :
finalSet.add(i)
return finalSet
def compliment(set1) :
finalSet = set()
bitList = set2bits(set1, U)
for i in range(len(U)) :
if(not bitList[i]) :
finalSet.add(i)
return finalSet
def implication(a,b):
return union(compliment(a), b)
###########################################################################################
###################### Problems 1-6 #######################################
###########################################################################################
#p \/ (q /\ r) = (p \/ q) /\ (p \/ r)
def prob1():
return union(P, intersection(Q,R)) == intersection(union(P,Q), union(P,R))
#p /\ (q \/ r) = (p /\ q) \/ (p /\ r)
def prob2():
return intersection(P, union(Q,R)) == union(intersection(P,Q), intersection(P,R))
#~(p /\ q) = ~p \/ ~q
def prob3():
return compliment(intersection(P,R)) == union(compliment(P), compliment(R))
#~(p \/ q) = ~p /\ ~q
def prob4():
return compliment(union(P,Q)) == intersection(compliment(P), compliment(Q))
#(p=>q) = (~q => ~p)
def prob5():
return implication(P,Q) == implication(compliment(Q), compliment(P))
#(p => q) /\ (q => r) => (p => r)
def prob6():
return implication(intersection(implication(P,Q), implication(Q,R)), implication(P,R))
print("Problem 1: ", prob1())
print("Problem 2: ", prob2())
print("Problem 3: ", prob3())
print("Problem 4: ", prob4())
print("Problem 5: ", prob5())
print("Problem 6: ", prob6())
'''
Problem 1: True
Problem 2: True
Problem 3: True
Problem 4: True
Problem 5: True
Problem 6: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
'''

AnyTree Randomizer

Apr 15, 2021NoahEaton

0 likes • 0 views

import anytree as at
import random as rm
# Generate a tree with node_count many nodes. Each has a number key that shows when it was made and a randomly selected color, red or white.
def random_tree(node_count):
# Generates the list of nodes
nodes = []
for i in range(node_count):
test = rm.randint(1,2)
if test == 1:
nodes.append(at.Node(str(i),color="white"))
else:
nodes.append(at.Node(str(i),color="red"))
#Creates the various main branches
for i in range(node_count):
for j in range(i, len(nodes)):
test = rm.randint(1,len(nodes))
if test == 1 and nodes[j].parent == None and (not nodes[i] == nodes[j]):
nodes[j].parent = nodes[i]
#Collects all the main branches into a single tree with the first node being the root
for i in range(1, node_count):
if nodes[i].parent == None and (not nodes[i] == nodes[0]):
nodes[i].parent = nodes[0]
return nodes[0]

Shuffle Deck of Cards

May 31, 2023CodeCatch

0 likes • 1 view

import random
# Define the ranks, suits, and create a deck
ranks = ['Ace', '2', '3', '4', '5', '6', '7', '8', '9', '10', 'Jack', 'Queen', 'King']
suits = ['Hearts', 'Diamonds', 'Clubs', 'Spades']
deck = [(rank, suit) for rank in ranks for suit in suits]
# Shuffle the deck
random.shuffle(deck)
# Display the shuffled deck
for card in deck:
print(card[0], "of", card[1])

print indices

Nov 18, 2022AustinLeath

0 likes • 0 views

# List
lst = [1, 2, 3, 'Alice', 'Alice']
# One-Liner
indices = [i for i in range(len(lst)) if lst[i]=='Alice']
# Result
print(indices)
# [3, 4]

Lonely Integer

Feb 26, 2023wabdelh

0 likes • 0 views

#84 48 13 20 61 20 33 97 34 45 6 63 71 66 24 57 92 74 6 25 51 86 48 15 64 55 77 30 56 53 37 99 9 59 57 61 30 97 50 63 59 62 39 32 34 4 96 51 8 86 10 62 16 55 81 88 71 25 27 78 79 88 92 50 16 8 67 82 67 37 84 3 33 4 78 98 39 64 98 94 24 82 45 3 53 74 96 9 10 94 13 79 15 27 56 66 32 81 77
# xor a list of integers to find the lonely integer
res = a[0]
for i in range(1,len(a)):
res = res ^ a[i]