Loading...
More Python Posts
# Python program for implementation of Radix Sort# A function to do counting sort of arr[] according to# the digit represented by exp.def countingSort(arr, exp1):n = len(arr)# The output array elements that will have sorted arroutput = [0] * (n)# initialize count array as 0count = [0] * (10)# Store count of occurrences in count[]for i in range(0, n):index = (arr[i]/exp1)count[int((index)%10)] += 1# Change count[i] so that count[i] now contains actual# position of this digit in output arrayfor i in range(1,10):count[i] += count[i-1]# Build the output arrayi = n-1while i>=0:index = (arr[i]/exp1)output[ count[ int((index)%10) ] - 1] = arr[i]count[int((index)%10)] -= 1i -= 1# Copying the output array to arr[],# so that arr now contains sorted numbersi = 0for i in range(0,len(arr)):arr[i] = output[i]# Method to do Radix Sortdef radixSort(arr):# Find the maximum number to know number of digitsmax1 = max(arr)# Do counting sort for every digit. Note that instead# of passing digit number, exp is passed. exp is 10^i# where i is current digit numberexp = 1while max1/exp > 0:countingSort(arr,exp)exp *= 10# Driver code to test abovearr = [ 170, 45, 75, 90, 802, 24, 2, 66]radixSort(arr)for i in range(len(arr)):print(arr[i]),
# Given a number n, print all primes smaller than or equal to n. It is also given that n is a small number.# For example, if n is 10, the output should be “2, 3, 5, 7”. If n is 20, the output should be “2, 3, 5, 7, 11, 13, 17, 19”.# Python program to print all primes smaller than or equal to# n using Sieve of Eratosthenesdef SieveOfEratosthenes(n):# Create a boolean array "prime[0..n]" and initialize# all entries it as true. A value in prime[i] will# finally be false if i is Not a prime, else true.prime = [True for i in range(n + 1)]p = 2while (p * p <= n):# If prime[p] is not changed, then it is a primeif (prime[p] == True):# Update all multiples of pfor i in range(p * 2, n + 1, p):prime[i] = Falsep += 1prime[0]= Falseprime[1]= False# Print all prime numbersfor p in range(n + 1):if prime[p]:print (p)# driver programif __name__=='__main__':n = 30print("Following are the prime numbers smaller")print("than or equal to ", n)print("than or equal to ", n)SieveOfEratosthenes(n)
from collections import Counterdef find_parity_outliers(nums):return [x for x in numsif x % 2 != Counter([n % 2 for n in nums]).most_common()[0][0]]find_parity_outliers([1, 2, 3, 4, 6]) # [1, 3]
print("hellur")
x[cat_var].isnull().sum().sort_values(ascending=False)
from itertools import productV='∀'E='∃'def tt(f,n) :xss=product((0,1),repeat=n)print('function:',f.__name__)for xs in xss : print(*xs,':',int(f(*xs)))print('')# p \/ (q /\ r) = (p \/ q) /\ (p \/ r)def prob1(p,q,r) :x=p or (q and r)y= (p or q) and (p or r)return x==ytt(prob1,3)# p/\(q\/r)=(p/\q)\/(p/\r)def prob2(p,q,r) :x=p and ( q or r )y=(p and q) or (p and r)return x==ytt(prob2,3)#~(p/\q)=(~p\/~q)def prob3(p,q) :x=not (p and q)y=(not p) or (not q)return x==ytt(prob3,2)#(~(p\/q))=((~p)/\~q)def prob4(p, q):x = not(p or q)y = not p and not qreturn x == ytt(prob4, 2)#(p/\(p=>q)=>q)def prob5(p,q):x= p and ( not p or q)return not x or qtt(prob5,2)# (p=>q)=((p\/q)=q)def prob6(p,q) :x = (not p or q)y=((p or q) == q)return x==ytt(prob6,2)#((p=>q)=(p\/q))=qdef prob7(p,q):if ((not p or q)==(p or q))==q:return 1tt(prob7,2)#(p=>q)=((p/\q)=p)def prob8(p,q):if (not p or q)==((p and q)==p):return 1tt(prob8,2)#((p=>q)=(p/\q))=pdef prob9(p,q):if ((not p or q)==(p and q))==p:return '1'tt(prob9,2)#(p=>q)/\(q=>r)=>(p=>r)def prob10(p,q,r) :x = not ((not p or q) and (not q or r)) or (not p or r)return xtt(prob10, 3)# (p = q) /\ (q => r) => (p => r)#answer 1def prob11(p,q,r) :x = not((p is q) and (not q or r)) or (not p or r)return xtt(prob11, 3)#(p=q)/\(q=>r)=>(p=>r)#answer 2def prob11(p,q,r):x=(p==q) and (not q or r)y=not p or rreturn not x or ytt(prob11,3)#((p=>q)/\(q=r))=>(p=>r)def prob12(p,q,r):x=(not p or q) and ( q==r )y=not p or rreturn not x or ytt(prob12,3)#(p=>q)=>((p/\r)=>(q/\r))def prob13(p,q,r):x=not p or qy=(not(p and r) or ( q and r))return not x or ytt(prob13,3)#Question#2----------------------------------------#(p=>q)=>r=p=>(q=>r)def prob14(p,q,r):x=(not(not p or q) or r)y=(not p or (not q or r))return x==ytt(prob14,3)def prob15(p, q):x = not(p and q)y = not p and not qreturn x == ytt(prob15, 2)def prob16(p, q):x = not(p or q)y = not p or not qreturn x == ytt(prob16, 2)def prob17(p):x = py = not preturn x == ytt(prob17, 1)