Loading...
More Python Posts
from itertools import productV='∀'E='∃'def tt(f,n) :xss=product((0,1),repeat=n)print('function:',f.__name__)for xs in xss : print(*xs,':',int(f(*xs)))print('')# p \/ (q /\ r) = (p \/ q) /\ (p \/ r)def prob1(p,q,r) :x=p or (q and r)y= (p or q) and (p or r)return x==ytt(prob1,3)# p/\(q\/r)=(p/\q)\/(p/\r)def prob2(p,q,r) :x=p and ( q or r )y=(p and q) or (p and r)return x==ytt(prob2,3)#~(p/\q)=(~p\/~q)def prob3(p,q) :x=not (p and q)y=(not p) or (not q)return x==ytt(prob3,2)#(~(p\/q))=((~p)/\~q)def prob4(p, q):x = not(p or q)y = not p and not qreturn x == ytt(prob4, 2)#(p/\(p=>q)=>q)def prob5(p,q):x= p and ( not p or q)return not x or qtt(prob5,2)# (p=>q)=((p\/q)=q)def prob6(p,q) :x = (not p or q)y=((p or q) == q)return x==ytt(prob6,2)#((p=>q)=(p\/q))=qdef prob7(p,q):if ((not p or q)==(p or q))==q:return 1tt(prob7,2)#(p=>q)=((p/\q)=p)def prob8(p,q):if (not p or q)==((p and q)==p):return 1tt(prob8,2)#((p=>q)=(p/\q))=pdef prob9(p,q):if ((not p or q)==(p and q))==p:return '1'tt(prob9,2)#(p=>q)/\(q=>r)=>(p=>r)def prob10(p,q,r) :x = not ((not p or q) and (not q or r)) or (not p or r)return xtt(prob10, 3)# (p = q) /\ (q => r) => (p => r)#answer 1def prob11(p,q,r) :x = not((p is q) and (not q or r)) or (not p or r)return xtt(prob11, 3)#(p=q)/\(q=>r)=>(p=>r)#answer 2def prob11(p,q,r):x=(p==q) and (not q or r)y=not p or rreturn not x or ytt(prob11,3)#((p=>q)/\(q=r))=>(p=>r)def prob12(p,q,r):x=(not p or q) and ( q==r )y=not p or rreturn not x or ytt(prob12,3)#(p=>q)=>((p/\r)=>(q/\r))def prob13(p,q,r):x=not p or qy=(not(p and r) or ( q and r))return not x or ytt(prob13,3)#Question#2----------------------------------------#(p=>q)=>r=p=>(q=>r)def prob14(p,q,r):x=(not(not p or q) or r)y=(not p or (not q or r))return x==ytt(prob14,3)def prob15(p, q):x = not(p and q)y = not p and not qreturn x == ytt(prob15, 2)def prob16(p, q):x = not(p or q)y = not p or not qreturn x == ytt(prob16, 2)def prob17(p):x = py = not preturn x == ytt(prob17, 1)
def sum_of_powers(end, power = 2, start = 1):return sum([(i) ** power for i in range(start, end + 1)])sum_of_powers(10) # 385sum_of_powers(10, 3) # 3025sum_of_powers(10, 3, 5) # 2925
# Listlst = [1, 2, 3, 'Alice', 'Alice']# One-Linerindices = [i for i in range(len(lst)) if lst[i]=='Alice']# Resultprint(indices)# [3, 4]
# Function to multiply two matricesdef multiply_matrices(matrix1, matrix2):# Check if the matrices can be multipliedif len(matrix1[0]) != len(matrix2):print("Error: The number of columns in the first matrix must be equal to the number of rows in the second matrix.")return None# Create the result matrix filled with zerosresult = [[0 for _ in range(len(matrix2[0]))] for _ in range(len(matrix1))]# Perform matrix multiplicationfor i in range(len(matrix1)):for j in range(len(matrix2[0])):for k in range(len(matrix2)):result[i][j] += matrix1[i][k] * matrix2[k][j]return result# Example matricesmatrix1 = [[1, 2, 3],[4, 5, 6],[7, 8, 9]]matrix2 = [[10, 11],[12, 13],[14, 15]]# Multiply the matricesresult_matrix = multiply_matrices(matrix1, matrix2)# Display the resultif result_matrix is not None:print("Result:")for row in result_matrix:print(row)
from time import sleepdef delay(fn, ms, *args):sleep(ms / 1000)return fn(*args)delay(lambda x: print(x), 1000, 'later') # prints 'later' after one second
""" Binary Search Algorithm----------------------------------------"""#iterative implementation of binary search in Pythondef binary_search(a_list, item):"""Performs iterative binary search to find the position of an integer in a given, sorted, list.a_list -- sorted list of integersitem -- integer you are searching for the position of"""first = 0last = len(a_list) - 1while first <= last:i = (first + last) / 2if a_list[i] == item:return ' found at position '.format(item=item, i=i)elif a_list[i] > item:last = i - 1elif a_list[i] < item:first = i + 1else:return ' not found in the list'.format(item=item)#recursive implementation of binary search in Pythondef binary_search_recursive(a_list, item):"""Performs recursive binary search of an integer in a given, sorted, list.a_list -- sorted list of integersitem -- integer you are searching for the position of"""first = 0last = len(a_list) - 1if len(a_list) == 0:return ' was not found in the list'.format(item=item)else:i = (first + last) // 2if item == a_list[i]:return ' found'.format(item=item)else:if a_list[i] < item:return binary_search_recursive(a_list[i+1:], item)else:return binary_search_recursive(a_list[:i], item)