Skip to main content

hex to rgb

1 like • Nov 19, 2022 • 2 views
Python
Loading...

More Python Posts

Convert Decimal to Binary and Hexadecimal

0 likes • May 31, 2023 • 0 views
Python
# Prompt user for a decimal number
decimal = int(input("Enter a decimal number: "))
# Convert decimal to binary
binary = bin(decimal)
# Convert decimal to hexadecimal
hexadecimal = hex(decimal)
# Display the results
print("Binary:", binary)
print("Hexadecimal:", hexadecimal)

Factorial of N

0 likes • Nov 19, 2022 • 0 views
Python
import math
def factorial(n):
print(math.factorial(n))
return (math.factorial(n))
factorial(5)
factorial(10)
factorial(15)

UNT CSCE 2100 Assignment 6

0 likes • Nov 18, 2022 • 0 views
Python
"""
Assignment 6
The goal is to make a graph of
who bit who and who was bitten.
There should be 10 nodes and 15 edges.
3 arrows of biting each other and
3 arrows of someone biting themselves.
Networkx can not do self biting
arrows, but it is in the code.
"""
from graphviz import Digraph as DDotGraph
from graphviz import Graph as UDotGraph
import networkx as nx
from networkx.algorithms.dag import transitive_closure
import graphviz as gv
import matplotlib.pyplot as plt
import numpy as np
from numpy.linalg import matrix_power
"""
class DGraph:
def __init__(self):
self.d = dict()
def clear(self):
self.d = dict()
def add_node(self,n):
if not self.d.get(n):
self.d[n] = set()
def add_edge(self,e):
f,t=e
self.add_node(f)
self.add_node(t)
vs=self.d.get(f)
if not vs:
self.d[f] = {t}
else:
vs.add(t)
def add_edges_from(self,es):
for e in es:
self.add_edge(e)
def edges(self):
for f in self.d:
for t in self.d[f]:
yield (f,t)
def number_of_nodes(self):
return len(self.d)
def __repr__(self):
return self.d.__repr__()
def show(self):
dot = gv.Digraph()
for e in self.edges():
#print(e)
f, t = e
dot.edge(str(f), str(t), label='')
#print(dot.source)
show(dot)
# displays graph with graphviz
def show(dot, show=True, file_name='graph.gv'):
dot.render(file_name, view=show)
def showGraph(g,label="",directed=True):
if directed:
dot = gv.Digraph()
else:
dot = gv.Graph()
for e in g.edges():
print(e)
f, t = e
dot.edge(str(f), str(t), label=label)
print(dot.source)
show(dot)
def bit():
G = DGraph()
G.add_edge(("Blade","Samara"))
G.add_edge(("Shadow","Wolfe"))
G.add_edge(("Raven", "Austin"))
G.add_edge(("Blade", "Alice"))
G.add_edge(("Alice","Brandon"))
G.add_edge(("Blade", "Wolfe"))
G.add_edge(("Samara", "Robin"))
G.add_edge(("Samara", "Raven"))
G.add_edge(("Samara", "Hamed"))
G.add_edge(("Wolfe", "Blade"))
G.add_edge(("Hamed", "Samara"))
G.add_edge(("Wolfe", "Shadow"))
G.add_edge(("Brandon", "Brandon"))
G.add_edge(("Hamed", "Hamed"))
G.add_edge(("Austin", "Austin"))
showGraph(G, label="bit")
bit()
def bitten():
G=DGraph()
G.add_edge(("Samara","Blade"))
G.add_edge(("Wolfe","Shadow"))
G.add_edge(("Austin", "Raven"))
G.add_edge(("Alice","Blade"))
G.add_edge(("Brandon", "Alice"))
G.add_edge(("Wolfe", "Blade" ))
G.add_edge(("Robin", "Samara"))
G.add_edge(("Raven", "Samara"))
G.add_edge(("Hamed", "Samara"))
G.add_edge(("Blade", "Wolfe"))
G.add_edge(("Samara", "Hamed"))
G.add_edge(("Shadow", "Wolfe"))
G.add_edge(("Brandon", "Brandon"))
G.add_edge(("Hamed", "Hamed"))
G.add_edge(("Austin", "Austin"))
showGraph(G, label="bitten by")
#bitten()
family = ["Blade", "Samara", "Shadow", "Wolfe", "Raven", "Alice"]
"""
#Do transitive closure call out and the
#matrix power operation should be the same
D = nx.DiGraph()
#D.add_nodes_from("SamaraBladeWolfeShadowAliceRavenBrandonRobinHamedAustin")
D.add_edge("Blade","Samara")
D.add_edge("Shadow","Wolfe")
D.add_edge("Raven", "Austin")
D.add_edge("Blade", "Alice")
D.add_edge("Alice","Brandon")
D.add_edge("Blade", "Wolfe")
D.add_edge("Samara", "Robin")
D.add_edge("Samara", "Raven")
D.add_edge("Samara", "Hamed")
D.add_edge("Wolfe", "Blade")
D.add_edge("Hamed", "Samara")
D.add_edge("Wolfe", "Shadow")
D.add_edge("Brandon", "Brandon")
D.add_edge("Hamed", "Hamed")
D.add_edge("Austin", "Austin")
T = transitive_closure(D)
for e in D.edges(): print(e)
for n in D.nodes(): print(n)
def show(H):
nx.draw(H, with_labels=True, font_weight='bold')
plt.show()
#Use nx.to_numpy_matrix instead of nx.adjacency_matrix
# M = nx.adjacency_matrix(D)
# MT = nx.adjacency_matrix(T)
M = nx.to_numpy_matrix(D)
MT = nx.to_numpy_matrix(T)
M2 = M@M
def mPower(M, k): #M is numpy matrix
assert k >= 1
P = M
for _ in range(k):
P = P @ M
return P
def tc(M):
#compute transitive closure
pass
D1 = nx.DiGraph(M)
D2 = nx.DiGraph(M2)
print('Matrix for Original\n', M)
N = nx.to_numpy_array(D,dtype=int)
print('np_array for Original\n', N)
print('\nMatrix for Transitive Closure\n', MT)
N2 = nx.to_numpy_array(T,dtype=int)
print('np_array for Transitive Closure\n', N2)
show(D) #can use D, T, and numpy matrix power operation
show(T)
show(T)

radians to degrees

0 likes • Nov 19, 2022 • 0 views
Python
from math import pi
def rads_to_degrees(rad):
return (rad * 180.0) / pi
rads_to_degrees(pi / 2) # 90.0

Nodes and Trees

0 likes • Nov 18, 2022 • 0 views
Python
import random
class Node:
def __init__(self, c):
self.left = None
self.right = None
self.color = c
def SetColor(self,c) :
self.color = c
def PrintNode(self) :
print(self.color)
def insert(s, root, i, n):
if i < n:
temp = Node(s[i])
root = temp
root.left = insert(s, root.left,2 * i + 1, n)
root.right = insert(s, root.right,2 * i + 2, n)
return root
def MakeTree(s) :
list = insert(s,None,0,len(s))
return list
def MakeSet() :
s = []
count = random.randint(7,12)
for _ in range(count) :
color = random.randint(0,1) == 0 and "Red" or "White"
s.append(color)
return s
def ChangeColor(root) :
if (root != None) :
if (root.color == "White") :
root.SetColor("Red")
ChangeColor(root.left)
ChangeColor(root.right)
def PrintList(root) :
if root.left != None :
PrintList(root.left)
else :
root.PrintNode()
if root.right != None :
PrintList(root.right)
else :
root.PrintNode()
t1 = MakeTree(MakeSet())
print("Original Colors For Tree 1:\n")
PrintList(t1)
ChangeColor(t1)
print("New Colors For Tree 1:\n")
PrintList(t1)
t2 = MakeTree(MakeSet())
print("Original Colors For Tree 2:\n")
PrintList(t2)
ChangeColor(t2)
print("New Colors For Tree 2:\n")
PrintList(t2)
t3 = MakeTree(MakeSet())
print("Original Colors For Tree 3:\n")
PrintList(t3)
ChangeColor(t3)
print("New Colors For Tree 3:\n")
PrintList(t3)

LeetCode Flood Fill

0 likes • Oct 15, 2022 • 0 views
Python
class Solution(object):
def floodFill(self, image, sr, sc, newColor):
R, C = len(image), len(image[0])
color = image[sr][sc]
if color == newColor: return image
def dfs(r, c):
if image[r][c] == color:
image[r][c] = newColor
if r >= 1: dfs(r-1, c)
if r+1 < R: dfs(r+1, c)
if c >= 1: dfs(r, c-1)
if c+1 < C: dfs(r, c+1)
dfs(sr, sc)
return image