Skip to main content
Loading...

More Python Posts

import subprocess
import logging
import re
from typing import Dict, Any, List, Optional


class BGPRouter:
    """BGP Router class for parsing and managing BGP route information."""
    
    def __init__(self, local_asn: str = '65412'):
        """Initialize BGP router with local ASN.
        
        Args:
            local_asn: Local BGP ASN number
        """
        self.local_asn = local_asn
        
    def _normalize_network_cidr(self, network: str) -> str:
        """Normalize network address by adding appropriate CIDR notation.
        
        Args:
            network: Network address (e.g., "172.31.0.0" or "172.16.0.1/32")
            
        Returns:
            Network address with appropriate CIDR notation
        """
        if '/' in network:
            return network
            
        try:
            octets = network.split('.')
            if len(octets) != 4:
                return network  # Invalid IP format or IPv6, return as-is

            # Determine CIDR based on trailing zero pattern

            # Check for default route
            if network == '0.0.0.0':
                return '0.0.0.0/0'

            if octets[1:] == ['0', '0', '0']:
                return f"{network}/8"

            if octets[2:] == ['0', '0']:
                return f"{network}/16"

            if octets[3] == '0':
                return f"{network}/24"
 
        except (ValueError, IndexError):
            return network
        

    def _parse_as_path(self, path_info: str) -> str:
        """Extract AS path from BGP path information.
        
        Args:
            path_info: Raw path information from BGP output
            
        Returns:
            Cleaned AS path string
        """
        path_info = path_info.strip()
        
        # Handle internal routes
        if path_info == 'i':
            return self.local_asn
            
        # Extract AS numbers using list comprehension
        path_parts = path_info.split()
        as_numbers = [part for part in path_parts if part.isdigit()]
        
        return ' '.join(as_numbers)

    def _parse_route_line(self, line: str) -> Optional[Dict[str, Any]]:
        """Parse a single BGP route line.
        
        Args:
            line: BGP route line from show command output
            
        Returns:
            Route dictionary or None if parsing fails
        """
        pattern = r'^\*>\s+(\S+)\s+(\S+)\s+(\d+)\s+(\d+)\s+(.+)$'
        match = re.match(pattern, line)
        if not match:
            return None
            
        network, next_hop, metric_str, weight_str, path_info = match.groups()
        
        try:
            return {
                "network": self._normalize_network_cidr(network),
                "nextHopIp": next_hop,
                "med": int(metric_str),
                "localPref": 100, # Always 100 for learned routes on PEs
                "weight": int(weight_str),
                "asPath": self._parse_as_path(path_info)
            }
        except ValueError as e:
            logging.warning(f"Failed to parse route line '{line}': {e}")
            return None

    def _find_route_start_index(self, lines: List[str]) -> Optional[int]:
        """Find the index where BGP routes start in the output.
        
        Args:
            lines: List of output lines
            
        Returns:
            Index of first route line or None if not found
        """
        for i, line in enumerate(lines):
            if 'Network' in line and 'Next Hop' in line:
                return i + 1
        return None

    def _get_all_bgp_routes(self) -> Dict[str, List[Dict[str, Any]]]:
        """Parse BGP route table output and return structured data.
        
        Returns:
            Dictionary containing list of BGP routes
        """
        try:
            output = """BGP table version is 0, local router ID is 169.254.112.97
Status codes: s suppressed, d damped, h history, * valid, > best, i - internal,
            r RIB-failure, S Stale, R Removed
Origin codes: i - IGP, e - EGP, ? - incomplete

Network          Next Hop            Metric LocPrf Weight Path
*> 0.0.0.0          169.254.112.98        0             0 65000 i
*> 172.16.0.1/32    169.254.112.98        0             0 65000 i
*> 172.16.0.2/32    169.254.112.98        0             0 65000 65114 49449 i
*> 172.16.0.3/32    169.254.112.98        0             0 65000 i
*> 172.16.0.4/32    169.254.112.98        0             0 65000 i
*> 172.16.0.5/32    169.254.112.98        0             0 65000 i
*> 172.16.0.112/32  169.254.112.98        0             0 65000 i
*> 172.16.0.113/32  169.254.112.98        0             0 65000 i
*> 172.16.0.114/32  169.254.112.98        0             0 65000 i
*> 172.16.0.115/32  169.254.112.98        0             0 65000 i
*> 172.16.0.116/32  169.254.112.98        0             0 65000 i
*> 172.16.0.117/32  169.254.112.98        0             0 65000 i
*> 172.16.0.118/32  169.254.112.98        0             0 65000 i
*> 172.16.0.119/32  169.254.112.98        0             0 65000 i
*> 172.16.0.120/32  169.254.112.98        0             0 65000 i
*> 172.16.0.121/32  169.254.112.98        0             0 65000 i
*> 172.31.0.0       169.254.112.97        100           32768 i
*> 172.0.0.0        169.254.112.97        100           32768 i
*> 172.1.1.0        169.254.112.97        100           32768 i
*> 172.31.0.1/32    169.254.112.97        100           32768 i
*> 172.31.0.2/32    169.254.112.97        100           32768 i
*> 172.31.0.3/32    169.254.112.97        100           32768 i
*> 172.31.0.4/32    169.254.112.97        100           32768 i
*> 2001:db8:2::/64  fe80::2               100           32768 i
*> 2001:db8:2::1/128 fe80::2              100           32768 i
*> 2001:db8:2::2/128 fe80::2              100           32768 i
*> 2001:db8:2::3/128 fe80::2              100           32768 i
*> 2001:db8:2::4/128 fe80::2              100           32768 i

Total number of prefixes 3233"""
            
            # Check if command output is valid
            if not output or not output.strip():
                logging.warning("BGP command returned empty output")
                return {"routes": []}
            
            lines = output.strip().split('\n')
            route_start_idx = self._find_route_start_index(lines)
            
            if route_start_idx is None:
                logging.warning("BGP output does not contain expected header format")
                return {"routes": []}
            
            # Parse routes using list comprehension and filter
            route_lines = [
                line.strip() for line in lines[route_start_idx:]
                if line.strip() and line.strip().startswith('*>') 
                and not line.strip().startswith('Total number')
            ]
            
            # Parse routes and convert to dictionaries
            routes = []
            for line in route_lines:
                route = self._parse_route_line(line)
                if route is not None:
                    routes.append(route)
            
            return {"routes": routes}
            
        except Exception as e:
            logging.error(f"Failed to get BGP routes: {e}")
            return {"routes": []}
    
    def get_specific_network(self, bgp_properties: Dict[str, Any], prefix: str) -> Dict[str, Any]:
        """Find specific network in BGP properties.
        
        Args:
            bgp_properties: BGP properties dictionary
            prefix: Network prefix to search for
            
        Returns:
            Route information dictionary or empty dict if not found
        """
        if not bgp_properties or not isinstance(bgp_properties, dict):
            logging.warning(f"Invalid BGP properties: {type(bgp_properties)}")
            return {}
            
        routes = bgp_properties.get("routes", [])
        logging.debug(f"Searching for prefix '{prefix}' in {len(routes)} routes")
        
        # Use next() with generator expression for efficient search
        try:
            route = next(
                route for route in routes 
                if route.get("network") == prefix
            )
            logging.debug(f"Found matching route for prefix '{prefix}': {route}")
            return route
        except StopIteration:
            logging.debug(f"No route found for prefix '{prefix}'")
            return {}


def main():
    """Main function to demonstrate BGP router functionality."""
    router = BGPRouter()
    
    # Get all BGP routes
    bgp_routes = router._get_all_bgp_routes()
    print(f"Parsed {len(bgp_routes['routes'])} BGP routes")
    print(bgp_routes)
    
    # # Display first few routes
    # for i, route in enumerate(bgp_routes['routes'][:3]):
    #     print(f"Route {i+1}: {route}")
    
    # # Search for specific prefix
    # specific_prefix = "172.16.0.1/32"
    # route_info = router.get_specific_network(bgp_routes, specific_prefix)
    
    # if route_info:
    #     print(f"Found route for {specific_prefix}: {route_info}")
    # else:
    #     print(f"No route found for {specific_prefix}")


if __name__ == "__main__":
    main()
# Python program for Plotting Fibonacci 
# spiral fractal using Turtle 
import turtle 
import math 
  
def fiboPlot(n): 
    a = 0
    b = 1
    square_a = a 
    square_b = b 
  
    # Setting the colour of the plotting pen to blue 
    x.pencolor("blue") 
  
    # Drawing the first square 
    x.forward(b * factor) 
    x.left(90) 
    x.forward(b * factor) 
    x.left(90) 
    x.forward(b * factor) 
    x.left(90) 
    x.forward(b * factor) 
  
    # Proceeding in the Fibonacci Series 
    temp = square_b 
    square_b = square_b + square_a 
    square_a = temp 
      
    # Drawing the rest of the squares 
    for i in range(1, n): 
        x.backward(square_a * factor) 
        x.right(90) 
        x.forward(square_b * factor) 
        x.left(90) 
        x.forward(square_b * factor) 
        x.left(90) 
        x.forward(square_b * factor) 
  
        # Proceeding in the Fibonacci Series 
        temp = square_b 
        square_b = square_b + square_a 
        square_a = temp 
  
    # Bringing the pen to starting point of the spiral plot 
    x.penup() 
    x.setposition(factor, 0) 
    x.seth(0) 
    x.pendown() 
  
    # Setting the colour of the plotting pen to red 
    x.pencolor("red") 
  
    # Fibonacci Spiral Plot 
    x.left(90) 
    for i in range(n): 
        print(b) 
        fdwd = math.pi * b * factor / 2
        fdwd /= 90
        for j in range(90): 
            x.forward(fdwd) 
            x.left(1) 
        temp = a 
        a = b 
        b = temp + b 
  
  
# Here 'factor' signifies the multiplicative  
# factor which expands or shrinks the scale 
# of the plot by a certain factor. 
factor = 1
  
# Taking Input for the number of  
# Iterations our Algorithm will run 
n = int(input('Enter the number of iterations (must be > 1): ')) 
  
# Plotting the Fibonacci Spiral Fractal  
# and printing the corresponding Fibonacci Number 
if n > 0: 
    print("Fibonacci series for", n, "elements :") 
    x = turtle.Turtle() 
    x.speed(100) 
    fiboPlot(n) 
    turtle.done() 
else: 
    print("Number of iterations must be > 0")
import os
import sys
import argparse
import json
import csv
import getpass
import string
import random
import re

from datetime import datetime
import ldap
import requests
from requests.packages.urllib3.exceptions import InsecureRequestWarning
requests.packages.urllib3.disable_warnings(InsecureRequestWarning)
from requests.auth import HTTPBasicAuth
import validators



def create_guac_connection(BASE_URL, auth_token, ldap_group, computer, guac_group_id):
    '''
    creates a guac connection
    '''
    json_header = {'Accept': 'application/json'}
    query_parm_payload = { 'token': auth_token }

    payload_data = {
   "parentIdentifier":guac_group_id,
   "name":computer,
   "protocol":"vnc",
   "parameters":{
      "port":"5900",
      "read-only":"",
      "swap-red-blue":"",
      "cursor":"",
      "color-depth":"",
      "clipboard-encoding":"",
      "disable-copy":"",
      "disable-paste":"",
      "dest-port":"",
      "recording-exclude-output":"",
      "recording-exclude-mouse":"",
      "recording-include-keys":"",
      "create-recording-path":"",
      "enable-sftp":"true",
      "sftp-port":"",
      "sftp-server-alive-interval":"",
      "enable-audio":"",
      "audio-servername":"",
      "sftp-directory":"",
      "sftp-root-directory":"",
      "sftp-passphrase":"",
      "sftp-private-key":"",
      "sftp-username":"",
      "sftp-password":"",
      "sftp-host-key":"",
      "sftp-hostname":"",
      "recording-name":"",
      "recording-path":"",
      "dest-host":"",
      "password":"asdasd",
      "username":"asdasd",
      "hostname":"nt72310.cvad.unt.edu"
   },
   "attributes":{
      "max-connections":"",
      "max-connections-per-user":"1",
      "weight":"",
      "failover-only":"",
      "guacd-port":"",
      "guacd-encryption":"",
      "guacd-hostname":""
   }
}
    CREATE_CONNECTION_URL = BASE_URL + "/api/session/data/mysql/connections"

    create_connection_request = requests.post(CREATE_CONNECTION_URL, headers=json_header, params=query_parm_payload, data=payload_data, verify=False)
    create_connection_result = create_connection_request.status_code


    if create_connection_result == "200":
        print("Successfully created computer: " + computer)
    else: 
        print(create_connection_request.json())

    return create_connection_result
def parse_ike_proposal(proposal):
    """
    Parse an IKE or ESP proposal string to extract encryption, hash, and DH group in human-readable format.
    
    Args:
        proposal (str): IKE or ESP proposal string, e.g., 'IKE:AES_CBC_128/HMAC_SHA1_96/PRF_HMAC_SHA1/MODP_1024'
                        or 'IKE:AES_GCM_16_256/PRF_HMAC_SHA2_256/ECP_384' or 'ESP:AES_CBC_256/HMAC_SHA1_96/NO_EXT_SEQ'
    
    Returns:
        dict: Dictionary with encryption, hash, and DH group in human-readable format
    """
    dh_mapping = {
        # Standard MODP groups from RFC 2409 and RFC 3526
        'MODP_768': '1',   # 768-bit MODP group
        'MODP_1024': '2',  # 1024-bit MODP group
        'MODP_1536': '5',  # 1536-bit MODP group
        'MODP_2048': '14', # 2048-bit MODP group
        'MODP_3072': '15', # 3072-bit MODP group
        'MODP_4096': '16', # 4096-bit MODP group
        'MODP_6144': '17', # 6144-bit MODP group
        'MODP_8192': '18', # 8192-bit MODP group
        # Elliptic Curve groups from RFC 5114 and RFC 5903
        'ECP_256': '19',   # 256-bit ECP group
        'ECP_384': '20',   # 384-bit ECP group
        'ECP_521': '21',   # 521-bit ECP group
        'ECP_192': '25',   # 192-bit ECP group
        'ECP_224': '26',   # 224-bit ECP group
        # MODP groups with subgroup sizes from RFC 5114
        'MODP_1024_160': '22', # 1024-bit MODP with 160-bit subgroup
        'MODP_2048_224': '23', # 2048-bit MODP with 224-bit subgroup
        'MODP_2048_256': '24', # 2048-bit MODP with 256-bit subgroup
        # Additional groups from RFC 7919 (FFDHE - Finite Field Diffie-Hellman Ephemeral)
        'FFDHE_2048': '256', # 2048-bit FFDHE group
        'FFDHE_3072': '257', # 3072-bit FFDHE group
        'FFDHE_4096': '258', # 4096-bit FFDHE group
        'FFDHE_6144': '259', # 6144-bit FFDHE group
        'FFDHE_8192': '260', # 8192-bit FFDHE group
        # Brainpool curves from RFC 6954
        'BRAINPOOL_P256R1': '28', # 256-bit Brainpool curve
        'BRAINPOOL_P384R1': '29', # 384-bit Brainpool curve
        'BRAINPOOL_P512R1': '30', # 512-bit Brainpool curve
        # Modern elliptic curve groups from RFC 8031
        'CURVE25519': '31', # 256-bit elliptic curve (Curve25519, 128-bit security)
        'CURVE448': '32',   # 448-bit elliptic curve (Curve448, 224-bit security)
    }
    
    enc_mapping = {
        # AES in CBC mode (RFC 3602, commonly used in IPsec and TLS)
        'AES_CBC_128': 'AES-128',       # 128-bit key, CBC mode
        'AES_CBC_192': 'AES-192',       # 192-bit key, CBC mode
        'AES_CBC_256': 'AES-256',       # 256-bit key, CBC mode
        # AES in GCM mode (RFC 4106, authenticated encryption for IPsec/TLS)
        'AES_GCM_16_128': 'AES-GCM-128', # 128-bit key, GCM mode, 16-byte ICV
        'AES_GCM_16_192': 'AES-GCM-192', # 192-bit key, GCM mode, 16-byte ICV
        'AES_GCM_16_256': 'AES-GCM-256', # 256-bit key, GCM mode, 16-byte ICV
        'AES_GCM_8_128': 'AES-GCM-128-8', # 128-bit key, GCM mode, 8-byte ICV
        'AES_GCM_8_256': 'AES-GCM-256-8', # 256-bit key, GCM mode, 8-byte ICV
        'AES_GCM_12_128': 'AES-GCM-128-12', # 128-bit key, GCM mode, 12-byte ICV
        'AES_GCM_12_256': 'AES-GCM-256-12', # 256-bit key, GCM mode, 12-byte ICV
        # AES in CCM mode (RFC 4309, used in IPsec and some wireless protocols)
        'AES_CCM_16_128': 'AES-CCM-128', # 128-bit key, CCM mode, 16-byte ICV
        'AES_CCM_16_256': 'AES-CCM-256', # 256-bit key, CCM mode, 16-byte ICV
        # AES in CTR mode (RFC 3686, used in some VPNs and SSH)
        'AES_CTR_128': 'AES-CTR-128',   # 128-bit key, CTR mode
        'AES_CTR_192': 'AES-CTR-192',   # 192-bit key, CTR mode
        'AES_CTR_256': 'AES-CTR-256',   # 256-bit key, CTR mode
        # Legacy and alternative algorithms
        '3DES_CBC': '3DES',             # Triple DES, CBC mode (RFC 2451, deprecated)
        'DES_CBC': 'DES',               # Single DES, CBC mode (RFC 2405, obsolete)
        'CAMELLIA_CBC_128': 'CAMELLIA-128', # 128-bit Camellia, CBC mode (RFC 5529)
        'CAMELLIA_CBC_256': 'CAMELLIA-256', # 256-bit Camellia, CBC mode (RFC 5529)
        'CHACHA20_POLY1305': 'CHACHA20-POLY1305', # ChaCha20 with Poly1305 (RFC 8032, used in TLS 1.3, OpenVPN)
        'BLOWFISH_CBC': 'BLOWFISH',     # Blowfish, CBC mode (non-standard, used in some OpenSSH/OpenVPN)
        'CAST5_CBC': 'CAST5',           # CAST-128, CBC mode (non-standard, used in some OpenVPN)
        # Null encryption (for testing or integrity-only scenarios, RFC 2410)
        'NULL': 'NULL'                  # No encryption, only integrity protection
    }
    
    hash_mapping = {
        # Legacy hash algorithms (RFC 2403, RFC 2404, deprecated in modern systems)
        'HMAC_MD5': 'MD5',                 # MD5 HMAC, 128-bit output (insecure, legacy use in IPsec/SSH)
        'HMAC_MD5_96': 'MD5-96',           # MD5 HMAC, truncated to 96 bits (IPsec)
        'HMAC_SHA1': 'SHA1',               # SHA1 HMAC, 160-bit output (legacy, used in IPsec/TLS)
        'HMAC_SHA1_96': 'SHA1-96',         # SHA1 HMAC, truncated to 96 bits (IPsec)
        # SHA2-based HMAC algorithms (RFC 4868, used in IPsec, TLS, SSH)
        'HMAC_SHA2_256': 'SHA2-256',       # SHA2-256 HMAC, full 256-bit output
        'HMAC_SHA2_256_128': 'SHA2-256-128', # SHA2-256 HMAC, truncated to 128 bits
        'HMAC_SHA2_384': 'SHA2-384',       # SHA2-384 HMAC, full 384-bit output
        'HMAC_SHA2_384_192': 'SHA2-384-192', # SHA2-384 HMAC, truncated to 192 bits
        'HMAC_SHA2_512': 'SHA2-512',       # SHA2-512 HMAC, full 512-bit output
        'HMAC_SHA2_512_256': 'SHA2-512-256', # SHA2-512 HMAC, truncated to 256 bits
        # SHA3-based HMAC algorithms (RFC 8009, emerging in modern protocols)
        'HMAC_SHA3_224': 'SHA3-224',       # SHA3-224 HMAC, 224-bit output
        'HMAC_SHA3_256': 'SHA3-256',       # SHA3-256 HMAC, 256-bit output
        'HMAC_SHA3_384': 'SHA3-384',       # SHA3-384 HMAC, 384-bit output
        'HMAC_SHA3_512': 'SHA3-512',       # SHA3-512 HMAC, 512-bit output
        # Authenticated encryption integrity (used with AES-GCM/CCM, RFC 4106, RFC 4309)
        'AES_GMAC_128': 'GMAC-128',        # AES-GMAC with 128-bit key
        'AES_GMAC_192': 'GMAC-192',        # AES-GMAC with 192-bit key
        'AES_GMAC_256': 'GMAC-256',        # AES-GMAC with 256-bit key
        # Poly1305 (RFC 8032, used with ChaCha20 in TLS 1.3, OpenVPN)
        'POLY1305': 'POLY1305',            # Poly1305 authenticator, 128-bit output
        # Null authentication (RFC 2410, for testing or encryption-only scenarios)
        'NONE': 'NULL'                     # No integrity protection
    }
    
    # Split the proposal into components
    components = proposal.split('/')
    
    # Initialize result dictionary
    result = {
        'encryption': 'Unknown',
        'hash': 'None',  # Default to 'None' for AEAD ciphers like AES-GCM
        'dh_group': 'None'  # Default to 'None' for ESP or proposals without DH
    }
    
    # Extract components based on expected length
    if len(components) == 4:  # Standard IKE format: IKE:ENC/HASH/PRF/DH
        result['encryption'] = enc_mapping.get(components[0].replace('IKE:', ''), 'Unknown')
        result['hash'] = hash_mapping.get(components[1], 'Unknown')
        result['dh_group'] = dh_mapping.get(components[3], 'None')
    elif len(components) == 3:  # AEAD IKE format: IKE:ENC/PRF/DH or ESP:ENC/HASH/EXT
        result['encryption'] = enc_mapping.get(components[0].replace('IKE:', '').replace('ESP:', ''), 'Unknown')
        if components[0].startswith('IKE:') and components[1].startswith('PRF_'):  # AEAD IKE (e.g., AES-GCM)
            result['hash'] = 'None'
            result['dh_group'] = dh_mapping.get(components[2], 'None')
        else:  # ESP format (e.g., ESP:AES_CBC_256/HMAC_SHA1_96/NO_EXT_SEQ)
            result['hash'] = hash_mapping.get(components[1], 'Unknown')
            result['dh_group'] = 'None'  # ESP proposals typically lack DH groups
    
    return result
 
def process_proposals(proposal_list):
    """
    Process a list of IKE or ESP proposals, grouping by encryption and hash, and listing all DH groups.
    
    Args:
        proposal_list (str): Comma-separated string of IKE or ESP proposals
    
    Returns:
        dict: Dictionary mapping (encryption, hash) tuples to lists of DH groups
    """
    #print("PROPSOSAL LIST:", proposal_list)
    proposals = proposal_list.split(', ')
    grouped_proposals = {}
    
    for proposal in proposals:
        parsed = parse_ike_proposal(proposal.strip())
        key = (parsed['encryption'], parsed['hash'])
        dh_group = parsed['dh_group']
        
        if key not in grouped_proposals:
            grouped_proposals[key] = []
        if dh_group != 'None' and dh_group not in grouped_proposals[key]:
            grouped_proposals[key].append(dh_group)
    
    # Sort DH groups for consistency (numerically by group number)
    for key in grouped_proposals:
        grouped_proposals[key].sort(key=lambda x: int(x))
    
    # Format output as strings
    result = []
    for (enc, hash_val), dh_groups in grouped_proposals.items():
        hash_part = f" Hash {hash_val}" if hash_val != 'None' else ""
        dh_group_part = f" DH Group(s) {' '.join(dh_groups)}" if dh_groups else " DH Group(s) None"
        result.append(f"Encryption {enc}{hash_part}{dh_group_part}")
    
    return result
 
# Example usage
if __name__ == "__main__":
    proposals = """IKE:AES_CBC_128/HMAC_SHA1_96/PRF_HMAC_SHA1/MODP_1024, IKE:AES_CBC_128/HMAC_SHA1_96/PRF_HMAC_SHA1/MODP_2048, IKE:AES_CBC_128/HMAC_SHA1_96/PRF_HMAC_SHA1/MODP_3072, IKE:AES_CBC_128/HMAC_SHA1_96/PRF_HMAC_SHA1/MODP_4096, IKE:AES_CBC_128/HMAC_SHA1_96/PRF_HMAC_SHA1/MODP_6144, IKE:AES_CBC_128/HMAC_SHA1_96/PRF_HMAC_SHA1/MODP_8192, IKE:AES_CBC_128/HMAC_SHA1_96/PRF_HMAC_SHA1/ECP_256, IKE:AES_CBC_128/HMAC_SHA1_96/PRF_HMAC_SHA1/ECP_384, IKE:AES_CBC_128/HMAC_SHA1_96/PRF_HMAC_SHA1/ECP_521, IKE:AES_CBC_128/HMAC_SHA1_96/PRF_HMAC_SHA1/MODP_1024_160, IKE:AES_CBC_128/HMAC_SHA1_96/PRF_HMAC_SHA1/MODP_2048_224, IKE:AES_CBC_128/HMAC_SHA1_96/PRF_HMAC_SHA1/MODP_2048_256, IKE:AES_CBC_128/HMAC_SHA2_256_128/PRF_HMAC_SHA2_256/MODP_1024, IKE:AES_CBC_128/HMAC_SHA2_256_128/PRF_HMAC_SHA2_256/MODP_2048, IKE:AES_CBC_128/HMAC_SHA2_256_128/PRF_HMAC_SHA2_256/MODP_3072, IKE:AES_CBC_128/HMAC_SHA2_256_128/PRF_HMAC_SHA2_256/MODP_4096, IKE:AES_CBC_128/HMAC_SHA2_256_128/PRF_HMAC_SHA2_256/MODP_6144, IKE:AES_CBC_128/HMAC_SHA2_256_128/PRF_HMAC_SHA2_256/MODP_8192, IKE:AES_CBC_128/HMAC_SHA2_256_128/PRF_HMAC_SHA2_256/ECP_256, IKE:AES_CBC_128/HMAC_SHA2_256_128/PRF_HMAC_SHA2_256/ECP_384, IKE:AES_CBC_128/HMAC_SHA2_256_128/PRF_HMAC_SHA2_256/ECP_521, IKE:AES_CBC_128/HMAC_SHA2_256_128/PRF_HMAC_SHA2_256/MODP_1024_160, IKE:AES_CBC_128/HMAC_SHA2_256_128/PRF_HMAC_SHA2_256/MODP_2048_224, IKE:AES_CBC_128/HMAC_SHA2_256_128/PRF_HMAC_SHA2_256/MODP_2048_256, IKE:AES_CBC_128/HMAC_SHA2_384_192/PRF_HMAC_SHA2_384/MODP_1024, IKE:AES_CBC_128/HMAC_SHA2_384_192/PRF_HMAC_SHA2_384/MODP_2048, IKE:AES_CBC_128/HMAC_SHA2_384_192/PRF_HMAC_SHA2_384/MODP_3072, IKE:AES_CBC_128/HMAC_SHA2_384_192/PRF_HMAC_SHA2_384/MODP_4096, IKE:AES_CBC_128/HMAC_SHA2_384_192/PRF_HMAC_SHA2_384/MODP_6144, IKE:AES_CBC_128/HMAC_SHA2_384_192/PRF_HMAC_SHA2_384/MODP_8192, IKE:AES_CBC_128/HMAC_SHA2_384_192/PRF_HMAC_SHA2_384/ECP_256, IKE:AES_CBC_128/HMAC_SHA2_384_192/PRF_HMAC_SHA2_384/ECP_384, IKE:AES_CBC_128/HMAC_SHA2_384_192/PRF_HMAC_SHA2_384/ECP_521, IKE:AES_CBC_128/HMAC_SHA2_384_192/PRF_HMAC_SHA2_384/MODP_1024_160, IKE:AES_CBC_128/HMAC_SHA2_384_192/PRF_HMAC_SHA2_384/MODP_2048_224, IKE:AES_CBC_128/HMAC_SHA2_384_192/PRF_HMAC_SHA2_384/MODP_2048_256, IKE:AES_CBC_128/HMAC_SHA2_512_256/PRF_HMAC_SHA2_512/MODP_1024, IKE:AES_CBC_128/HMAC_SHA2_512_256/PRF_HMAC_SHA2_512/MODP_2048, IKE:AES_CBC_128/HMAC_SHA2_512_256/PRF_HMAC_SHA2_512/MODP_3072, IKE:AES_CBC_128/HMAC_SHA2_512_256/PRF_HMAC_SHA2_512/MODP_4096, IKE:AES_CBC_128/HMAC_SHA2_512_256/PRF_HMAC_SHA2_512/MODP_6144, IKE:AES_CBC_128/HMAC_SHA2_512_256/PRF_HMAC_SHA2_512/MODP_8192, IKE:AES_CBC_128/HMAC_SHA2_512_256/PRF_HMAC_SHA2_512/ECP_256, IKE:AES_CBC_128/HMAC_SHA2_512_256/PRF_HMAC_SHA2_512/ECP_384, IKE:AES_CBC_128/HMAC_SHA2_512_256/PRF_HMAC_SHA2_512/ECP_521, IKE:AES_CBC_128/HMAC_SHA2_512_256/PRF_HMAC_SHA2_512/MODP_1024_160, IKE:AES_CBC_128/HMAC_SHA2_512_256/PRF_HMAC_SHA2_512/MODP_2048_224, IKE:AES_CBC_128/HMAC_SHA2_512_256/PRF_HMAC_SHA2_512/MODP_2048_256, IKE:AES_CBC_256/HMAC_SHA1_96/PRF_HMAC_SHA1/MODP_1024, IKE:AES_CBC_256/HMAC_SHA1_96/PRF_HMAC_SHA1/MODP_2048, IKE:AES_CBC_256/HMAC_SHA1_96/PRF_HMAC_SHA1/MODP_3072, IKE:AES_CBC_256/HMAC_SHA1_96/PRF_HMAC_SHA1/MODP_4096, IKE:AES_CBC_256/HMAC_SHA1_96/PRF_HMAC_SHA1/MODP_6144, IKE:AES_CBC_256/HMAC_SHA1_96/PRF_HMAC_SHA1/MODP_8192, IKE:AES_CBC_256/HMAC_SHA1_96/PRF_HMAC_SHA1/ECP_256, IKE:AES_CBC_256/HMAC_SHA1_96/PRF_HMAC_SHA1/ECP_384, IKE:AES_CBC_256/HMAC_SHA1_96/PRF_HMAC_SHA1/ECP_521, IKE:AES_CBC_256/HMAC_SHA1_96/PRF_HMAC_SHA1/MODP_1024_160, IKE:AES_CBC_256/HMAC_SHA1_96/PRF_HMAC_SHA1/MODP_2048_224, IKE:AES_CBC_256/HMAC_SHA1_96/PRF_HMAC_SHA1/MODP_2048_256, IKE:AES_CBC_256/HMAC_SHA2_256_128/PRF_HMAC_SHA2_256/MODP_1024, IKE:AES_CBC_256/HMAC_SHA2_256_128/PRF_HMAC_SHA2_256/MODP_2048, IKE:AES_CBC_256/HMAC_SHA2_256_128/PRF_HMAC_SHA2_256/MODP_3072, IKE:AES_CBC_256/HMAC_SHA2_256_128/PRF_HMAC_SHA2_256/MODP_4096, IKE:AES_CBC_256/HMAC_SHA2_256_128/PRF_HMAC_SHA2_256/MODP_6144, IKE:AES_CBC_256/HMAC_SHA2_256_128/PRF_HMAC_SHA2_256/MODP_8192, IKE:AES_CBC_256/HMAC_SHA2_256_128/PRF_HMAC_SHA2_256/ECP_256, IKE:AES_CBC_256/HMAC_SHA2_256_128/PRF_HMAC_SHA2_256/ECP_384, IKE:AES_CBC_256/HMAC_SHA2_256_128/PRF_HMAC_SHA2_256/ECP_521, IKE:AES_CBC_256/HMAC_SHA2_256_128/PRF_HMAC_SHA2_256/MODP_1024_160, IKE:AES_CBC_256/HMAC_SHA2_256_128/PRF_HMAC_SHA2_256/MODP_2048_224, IKE:AES_CBC_256/HMAC_SHA2_256_128/PRF_HMAC_SHA2_256/MODP_2048_256, IKE:AES_CBC_256/HMAC_SHA2_384_192/PRF_HMAC_SHA2_384/MODP_1024, IKE:AES_CBC_256/HMAC_SHA2_384_192/PRF_HMAC_SHA2_384/MODP_2048, IKE:AES_CBC_256/HMAC_SHA2_384_192/PRF_HMAC_SHA2_384/MODP_3072, IKE:AES_CBC_256/HMAC_SHA2_384_192/PRF_HMAC_SHA2_384/MODP_4096, IKE:AES_CBC_256/HMAC_SHA2_384_192/PRF_HMAC_SHA2_384/MODP_6144, IKE:AES_CBC_256/HMAC_SHA2_384_192/PRF_HMAC_SHA2_384/MODP_8192, IKE:AES_CBC_256/HMAC_SHA2_384_192/PRF_HMAC_SHA2_384/ECP_256, IKE:AES_CBC_256/HMAC_SHA2_384_192/PRF_HMAC_SHA2_384/ECP_384, IKE:AES_CBC_256/HMAC_SHA2_384_192/PRF_HMAC_SHA2_384/ECP_521, IKE:AES_CBC_256/HMAC_SHA2_384_192/PRF_HMAC_SHA2_384/MODP_1024_160, IKE:AES_CBC_256/HMAC_SHA2_384_192/PRF_HMAC_SHA2_384/MODP_2048_224, IKE:AES_CBC_256/HMAC_SHA2_384_192/PRF_HMAC_SHA2_384/MODP_2048_256, IKE:AES_CBC_256/HMAC_SHA2_512_256/PRF_HMAC_SHA2_512/MODP_1024, IKE:AES_CBC_256/HMAC_SHA2_512_256/PRF_HMAC_SHA2_512/MODP_2048, IKE:AES_CBC_256/HMAC_SHA2_512_256/PRF_HMAC_SHA2_512/MODP_3072, IKE:AES_CBC_256/HMAC_SHA2_512_256/PRF_HMAC_SHA2_512/MODP_4096, IKE:AES_CBC_256/HMAC_SHA2_512_256/PRF_HMAC_SHA2_512/MODP_6144, IKE:AES_CBC_256/HMAC_SHA2_512_256/PRF_HMAC_SHA2_512/MODP_8192, IKE:AES_CBC_256/HMAC_SHA2_512_256/PRF_HMAC_SHA2_512/ECP_256, IKE:AES_CBC_256/HMAC_SHA2_512_256/PRF_HMAC_SHA2_512/ECP_384, IKE:AES_CBC_256/HMAC_SHA2_512_256/PRF_HMAC_SHA2_512/ECP_521, IKE:AES_CBC_256/HMAC_SHA2_512_256/PRF_HMAC_SHA2_512/MODP_1024_160, IKE:AES_CBC_256/HMAC_SHA2_512_256/PRF_HMAC_SHA2_512/MODP_2048_224, IKE:AES_CBC_256/HMAC_SHA2_512_256/PRF_HMAC_SHA2_512/MODP_2048_256"""
    
 
    proposals_result = '\n'.join(process_proposals(proposals))
    print(f"AWS tunnel is processing proposals to find a matching configuration. AWS tunnel is configured as follows:\n\n{proposals_result}")