• Dec 18, 2025 •CodeCatch
0 likes • 3 views
def insertion_sort(arr): # Traverse through 1 to len(arr) for i in range(1, len(arr)): key = arr[i] # Move elements of arr[0..i-1], that are greater than key, # to one position ahead of their current position j = i - 1 while j >= 0 and key < arr[j]: arr[j + 1] = arr[j] j -= 1 arr[j + 1] = key # Example usage: arr = [12, 11, 13, 5, 6, 7, 8, 10] insertion_sort(arr) print("Sorted array is:", arr)
• Nov 19, 2022 •CodeCatch
0 likes • 1 view
def key_of_min(d): return min(d, key = d.get) key_of_min({'a':4, 'b':0, 'c':13}) # b
• Nov 18, 2022 •AustinLeath
0 likes • 8 views
#question1.py def rose(n) : if n==0 : yield [] else : for k in range(0,n) : for l in rose(k) : for r in rose(n-1-k) : yield [l]+[r]+[r] def start(n) : for x in rose(n) : print(x) #basically I am printing x for each rose(n) file print("starting program: \n") start(2) # here is where I call the start function
0 likes • 0 views
# Given a number n, print all primes smaller than or equal to n. It is also given that n is a small number. # For example, if n is 10, the output should be “2, 3, 5, 7”. If n is 20, the output should be “2, 3, 5, 7, 11, 13, 17, 19”. # Python program to print all primes smaller than or equal to # n using Sieve of Eratosthenes def SieveOfEratosthenes(n): # Create a boolean array "prime[0..n]" and initialize # all entries it as true. A value in prime[i] will # finally be false if i is Not a prime, else true. prime = [True for i in range(n + 1)] p = 2 while (p * p <= n): # If prime[p] is not changed, then it is a prime if (prime[p] == True): # Update all multiples of p for i in range(p * 2, n + 1, p): prime[i] = False p += 1 prime[0]= False prime[1]= False # Print all prime numbers for p in range(n + 1): if prime[p]: print (p) # driver program if __name__=='__main__': n = 30 print("Following are the prime numbers smaller") print("than or equal to ", n) print("than or equal to ", n) SieveOfEratosthenes(n)
• Mar 12, 2021 •mo_ak
prime_lists=[] # a list to store the prime numbers def prime(n): # define prime numbers if n <= 1: return False # divide n by 2... up to n-1 for i in range(2, n): if n % i == 0: # the remainder should'nt be a 0 return False else: prime_lists.append(n) return True for n in range(30,1000): # calling function and passing starting point =30 coz we need primes >30 prime(n) check=0 # a var to limit the output to 10 only for n in prime_lists: for x in prime_lists: val= n *x if (val > 1000 ): check=check +1 if (check <10) : print("the num is:", val , "=",n , "* ", x ) break
• Dec 24, 2025 •CodeCatch
1 like • 4 views
def counting_sort(arr, exp): n = len(arr) output = [0] * n count = [0] * 10 for i in range(n): index = (arr[i] // exp) % 10 count[index] += 1 for i in range(1, 10): count[i] += count[i-1] i = n - 1 while i >= 0: index = (arr[i] // exp) % 10 output[count[index] - 1] = arr[i] count[index] -= 1 i -= 1 for i in range(n): arr[i] = output[i] def radix_sort(arr): max_val = max(arr) exp = 1 while max_val // exp > 0: counting_sort(arr, exp) exp *= 10 if __name__ == "__main__": arr = [170, 45, 75, 90, 802, 24, 2, 66] print("Original array:", arr) radix_sort(arr) print("Sorted array:", arr)