• Nov 19, 2022 •CodeCatch
0 likes • 4 views
def clamp_number(num, a, b): return max(min(num, max(a, b)), min(a, b)) clamp_number(2, 3, 5) # 3 clamp_number(1, -1, -5) # -1
• Dec 18, 2025 •CodeCatch
0 likes • 3 views
def insertion_sort(arr): # Traverse through 1 to len(arr) for i in range(1, len(arr)): key = arr[i] # Move elements of arr[0..i-1], that are greater than key, # to one position ahead of their current position j = i - 1 while j >= 0 and key < arr[j]: arr[j + 1] = arr[j] j -= 1 arr[j + 1] = key # Example usage: arr = [12, 11, 13, 5, 6, 7, 8, 10] insertion_sort(arr) print("Sorted array is:", arr)
• Jun 1, 2023 •CodeCatch
from colorama import init, Fore # Initialize colorama init() print(Fore.RED + "This text is in red color.") print(Fore.GREEN + "This text is in green color.") print(Fore.BLUE + "This text is in blue color.") # Reset colorama print(Fore.RESET + "This text is back to the default color.")
• Oct 7, 2022 •KETRICK
0 likes • 5 views
x[cat_var].isnull().sum().sort_values(ascending=False)
0 likes • 2 views
# Python program for Plotting Fibonacci # spiral fractal using Turtle import turtle import math def fiboPlot(n): a = 0 b = 1 square_a = a square_b = b # Setting the colour of the plotting pen to blue x.pencolor("blue") # Drawing the first square x.forward(b * factor) x.left(90) x.forward(b * factor) x.left(90) x.forward(b * factor) x.left(90) x.forward(b * factor) # Proceeding in the Fibonacci Series temp = square_b square_b = square_b + square_a square_a = temp # Drawing the rest of the squares for i in range(1, n): x.backward(square_a * factor) x.right(90) x.forward(square_b * factor) x.left(90) x.forward(square_b * factor) x.left(90) x.forward(square_b * factor) # Proceeding in the Fibonacci Series temp = square_b square_b = square_b + square_a square_a = temp # Bringing the pen to starting point of the spiral plot x.penup() x.setposition(factor, 0) x.seth(0) x.pendown() # Setting the colour of the plotting pen to red x.pencolor("red") # Fibonacci Spiral Plot x.left(90) for i in range(n): print(b) fdwd = math.pi * b * factor / 2 fdwd /= 90 for j in range(90): x.forward(fdwd) x.left(1) temp = a a = b b = temp + b # Here 'factor' signifies the multiplicative # factor which expands or shrinks the scale # of the plot by a certain factor. factor = 1 # Taking Input for the number of # Iterations our Algorithm will run n = int(input('Enter the number of iterations (must be > 1): ')) # Plotting the Fibonacci Spiral Fractal # and printing the corresponding Fibonacci Number if n > 0: print("Fibonacci series for", n, "elements :") x = turtle.Turtle() x.speed(100) fiboPlot(n) turtle.done() else: print("Number of iterations must be > 0")
• Mar 10, 2021 •Skrome
color2 = (60, 74, 172) color1 = (19, 28, 87) percent = 1.0 for i in range(101): resultRed = round(color1[0] + percent * (color2[0] - color1[0])) resultGreen = round(color1[1] + percent * (color2[1] - color1[1])) resultBlue = round(color1[2] + percent * (color2[2] - color1[2])) print((resultRed, resultGreen, resultBlue)) percent -= 0.01