• Nov 19, 2022 •CodeCatch
0 likes • 1 view
import math def factorial(n): print(math.factorial(n)) return (math.factorial(n)) factorial(5) factorial(10) factorial(15)
0 likes • 0 views
# Given a number n, print all primes smaller than or equal to n. It is also given that n is a small number. # For example, if n is 10, the output should be “2, 3, 5, 7”. If n is 20, the output should be “2, 3, 5, 7, 11, 13, 17, 19”. # Python program to print all primes smaller than or equal to # n using Sieve of Eratosthenes def SieveOfEratosthenes(n): # Create a boolean array "prime[0..n]" and initialize # all entries it as true. A value in prime[i] will # finally be false if i is Not a prime, else true. prime = [True for i in range(n + 1)] p = 2 while (p * p <= n): # If prime[p] is not changed, then it is a prime if (prime[p] == True): # Update all multiples of p for i in range(p * 2, n + 1, p): prime[i] = False p += 1 prime[0]= False prime[1]= False # Print all prime numbers for p in range(n + 1): if prime[p]: print (p) # driver program if __name__=='__main__': n = 30 print("Following are the prime numbers smaller") print("than or equal to ", n) print("than or equal to ", n) SieveOfEratosthenes(n)
0 likes • 2 views
from functools import partial def curry(fn, *args): return partial(fn, *args) add = lambda x, y: x + y add10 = curry(add, 10) add10(20) # 30
• May 31, 2023 •CodeCatch
def generate_floyds_triangle(num_rows): triangle = [] number = 1 for row in range(num_rows): current_row = [] for _ in range(row + 1): current_row.append(number) number += 1 triangle.append(current_row) return triangle def display_floyds_triangle(triangle): for row in triangle: for number in row: print(number, end=" ") print() # Prompt the user for the number of rows num_rows = int(input("Enter the number of rows for Floyd's Triangle: ")) # Generate Floyd's Triangle floyds_triangle = generate_floyds_triangle(num_rows) # Display Floyd's Triangle display_floyds_triangle(floyds_triangle)
• Sep 14, 2024 •rgannedo-6205
0 likes • 4 views
# Python binary search function def binary_search(arr, target): left = 0 right = len(arr) - 1 while left <= right: mid = (left + right) // 2 if arr[mid] == target: return mid elif arr[mid] < target: left = mid + 1 else: right = mid - 1 return -1 # Usage arr = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] target = 7 result = binary_search(arr, target) if result != -1: print(f"Element is present at index {result}") else: print("Element is not present in array")
0 likes • 6 views
""" Binary Search Algorithm ---------------------------------------- """ #iterative implementation of binary search in Python def binary_search(a_list, item): """Performs iterative binary search to find the position of an integer in a given, sorted, list. a_list -- sorted list of integers item -- integer you are searching for the position of """ first = 0 last = len(a_list) - 1 while first <= last: i = (first + last) / 2 if a_list[i] == item: return ' found at position '.format(item=item, i=i) elif a_list[i] > item: last = i - 1 elif a_list[i] < item: first = i + 1 else: return ' not found in the list'.format(item=item) #recursive implementation of binary search in Python def binary_search_recursive(a_list, item): """Performs recursive binary search of an integer in a given, sorted, list. a_list -- sorted list of integers item -- integer you are searching for the position of """ first = 0 last = len(a_list) - 1 if len(a_list) == 0: return ' was not found in the list'.format(item=item) else: i = (first + last) // 2 if item == a_list[i]: return ' found'.format(item=item) else: if a_list[i] < item: return binary_search_recursive(a_list[i+1:], item) else: return binary_search_recursive(a_list[:i], item)