• Nov 19, 2022 •CodeCatch
0 likes • 18 views
def sum_of_powers(end, power = 2, start = 1): return sum([(i) ** power for i in range(start, end + 1)]) sum_of_powers(10) # 385 sum_of_powers(10, 3) # 3025 sum_of_powers(10, 3, 5) # 2925
• Jan 20, 2021 •Ntindle
0 likes • 5 views
print(“Hello World”)
• Oct 7, 2022 •KETRICK
x[cat_var].isnull().sum().sort_values(ascending=False)
0 likes • 6 views
""" Binary Search Algorithm ---------------------------------------- """ #iterative implementation of binary search in Python def binary_search(a_list, item): """Performs iterative binary search to find the position of an integer in a given, sorted, list. a_list -- sorted list of integers item -- integer you are searching for the position of """ first = 0 last = len(a_list) - 1 while first <= last: i = (first + last) / 2 if a_list[i] == item: return ' found at position '.format(item=item, i=i) elif a_list[i] > item: last = i - 1 elif a_list[i] < item: first = i + 1 else: return ' not found in the list'.format(item=item) #recursive implementation of binary search in Python def binary_search_recursive(a_list, item): """Performs recursive binary search of an integer in a given, sorted, list. a_list -- sorted list of integers item -- integer you are searching for the position of """ first = 0 last = len(a_list) - 1 if len(a_list) == 0: return ' was not found in the list'.format(item=item) else: i = (first + last) // 2 if item == a_list[i]: return ' found'.format(item=item) else: if a_list[i] < item: return binary_search_recursive(a_list[i+1:], item) else: return binary_search_recursive(a_list[:i], item)
0 likes • 2 views
# Deleting all even numbers from a list a = [1,2,3,4,5] del a[1::2] print(a)
# Python program for Plotting Fibonacci # spiral fractal using Turtle import turtle import math def fiboPlot(n): a = 0 b = 1 square_a = a square_b = b # Setting the colour of the plotting pen to blue x.pencolor("blue") # Drawing the first square x.forward(b * factor) x.left(90) x.forward(b * factor) x.left(90) x.forward(b * factor) x.left(90) x.forward(b * factor) # Proceeding in the Fibonacci Series temp = square_b square_b = square_b + square_a square_a = temp # Drawing the rest of the squares for i in range(1, n): x.backward(square_a * factor) x.right(90) x.forward(square_b * factor) x.left(90) x.forward(square_b * factor) x.left(90) x.forward(square_b * factor) # Proceeding in the Fibonacci Series temp = square_b square_b = square_b + square_a square_a = temp # Bringing the pen to starting point of the spiral plot x.penup() x.setposition(factor, 0) x.seth(0) x.pendown() # Setting the colour of the plotting pen to red x.pencolor("red") # Fibonacci Spiral Plot x.left(90) for i in range(n): print(b) fdwd = math.pi * b * factor / 2 fdwd /= 90 for j in range(90): x.forward(fdwd) x.left(1) temp = a a = b b = temp + b # Here 'factor' signifies the multiplicative # factor which expands or shrinks the scale # of the plot by a certain factor. factor = 1 # Taking Input for the number of # Iterations our Algorithm will run n = int(input('Enter the number of iterations (must be > 1): ')) # Plotting the Fibonacci Spiral Fractal # and printing the corresponding Fibonacci Number if n > 0: print("Fibonacci series for", n, "elements :") x = turtle.Turtle() x.speed(100) fiboPlot(n) turtle.done() else: print("Number of iterations must be > 0")