Loading...
More Python Posts
import calendar# Prompt user for year and monthyear = int(input("Enter the year: "))month = int(input("Enter the month: "))# Create a calendar objectcal = calendar.monthcalendar(year, month)# Display the calendarprint(calendar.month_name[month], year)print("Mon Tue Wed Thu Fri Sat Sun")for week in cal:for day in week:if day == 0:print(" ", end="")else:print(str(day).rjust(2), " ", end="")print()
import copybegining = [False,False,False,False,False,None,True,True,True,True,True]#False = black True = whiteits = [0]def swap(layout, step):layoutCopy = copy.deepcopy(layout)layoutCopy[(step[0]+step[1])], layoutCopy[step[1]] = layoutCopy[step[1]], layoutCopy[(step[0]+step[1])]return layoutCopydef isSolved(layout):for i in range(len(layout)):if(layout[i] == False):return (i >= (len(layout)/2))def recurse(layout, its, steps = []):if isSolved(layout):its[0] += 1print(layout,list(x[0] for x in steps))returnstep = Nonefor i in range(len(layout)):if(layout[i] == None):if(i >= 1): #If the empty space could have something to the leftif(layout[i - 1] == False):step = [-1,i]recurse(swap(layout,step), its, (steps+[step]))if(i > 1): #If the empty space could have something 2 to the leftif(layout[i - 2] == False):step = [-2,i]recurse(swap(layout,step), its, (steps+[step]))if(i < (len(layout)-1)): #If the empty space could have something to the rightif(layout[i + 1] == True):step = [1,i]recurse(swap(layout,step), its, (steps+[step]))if(i < (len(layout)-2)): #If the empty space could have something to the rightif(layout[i + 2] == True):step = [2,i]recurse(swap(layout,step), its, (steps+[step]))its[0] += 1#return Nonerecurse(begining,its,[])print(its[0])
# Deleting all even numbers from a lista = [1,2,3,4,5]del a[1::2]print(a)
"""Assignment 6The goal is to make a graph ofwho bit who and who was bitten.There should be 10 nodes and 15 edges.3 arrows of biting each other and3 arrows of someone biting themselves.Networkx can not do self bitingarrows, but it is in the code."""from graphviz import Digraph as DDotGraphfrom graphviz import Graph as UDotGraphimport networkx as nxfrom networkx.algorithms.dag import transitive_closureimport graphviz as gvimport matplotlib.pyplot as pltimport numpy as npfrom numpy.linalg import matrix_power"""class DGraph:def __init__(self):self.d = dict()def clear(self):self.d = dict()def add_node(self,n):if not self.d.get(n):self.d[n] = set()def add_edge(self,e):f,t=eself.add_node(f)self.add_node(t)vs=self.d.get(f)if not vs:self.d[f] = {t}else:vs.add(t)def add_edges_from(self,es):for e in es:self.add_edge(e)def edges(self):for f in self.d:for t in self.d[f]:yield (f,t)def number_of_nodes(self):return len(self.d)def __repr__(self):return self.d.__repr__()def show(self):dot = gv.Digraph()for e in self.edges():#print(e)f, t = edot.edge(str(f), str(t), label='')#print(dot.source)show(dot)# displays graph with graphvizdef show(dot, show=True, file_name='graph.gv'):dot.render(file_name, view=show)def showGraph(g,label="",directed=True):if directed:dot = gv.Digraph()else:dot = gv.Graph()for e in g.edges():print(e)f, t = edot.edge(str(f), str(t), label=label)print(dot.source)show(dot)def bit():G = DGraph()G.add_edge(("Blade","Samara"))G.add_edge(("Shadow","Wolfe"))G.add_edge(("Raven", "Austin"))G.add_edge(("Blade", "Alice"))G.add_edge(("Alice","Brandon"))G.add_edge(("Blade", "Wolfe"))G.add_edge(("Samara", "Robin"))G.add_edge(("Samara", "Raven"))G.add_edge(("Samara", "Hamed"))G.add_edge(("Wolfe", "Blade"))G.add_edge(("Hamed", "Samara"))G.add_edge(("Wolfe", "Shadow"))G.add_edge(("Brandon", "Brandon"))G.add_edge(("Hamed", "Hamed"))G.add_edge(("Austin", "Austin"))showGraph(G, label="bit")bit()def bitten():G=DGraph()G.add_edge(("Samara","Blade"))G.add_edge(("Wolfe","Shadow"))G.add_edge(("Austin", "Raven"))G.add_edge(("Alice","Blade"))G.add_edge(("Brandon", "Alice"))G.add_edge(("Wolfe", "Blade" ))G.add_edge(("Robin", "Samara"))G.add_edge(("Raven", "Samara"))G.add_edge(("Hamed", "Samara"))G.add_edge(("Blade", "Wolfe"))G.add_edge(("Samara", "Hamed"))G.add_edge(("Shadow", "Wolfe"))G.add_edge(("Brandon", "Brandon"))G.add_edge(("Hamed", "Hamed"))G.add_edge(("Austin", "Austin"))showGraph(G, label="bitten by")#bitten()family = ["Blade", "Samara", "Shadow", "Wolfe", "Raven", "Alice"]"""#Do transitive closure call out and the#matrix power operation should be the sameD = nx.DiGraph()#D.add_nodes_from("SamaraBladeWolfeShadowAliceRavenBrandonRobinHamedAustin")D.add_edge("Blade","Samara")D.add_edge("Shadow","Wolfe")D.add_edge("Raven", "Austin")D.add_edge("Blade", "Alice")D.add_edge("Alice","Brandon")D.add_edge("Blade", "Wolfe")D.add_edge("Samara", "Robin")D.add_edge("Samara", "Raven")D.add_edge("Samara", "Hamed")D.add_edge("Wolfe", "Blade")D.add_edge("Hamed", "Samara")D.add_edge("Wolfe", "Shadow")D.add_edge("Brandon", "Brandon")D.add_edge("Hamed", "Hamed")D.add_edge("Austin", "Austin")T = transitive_closure(D)for e in D.edges(): print(e)for n in D.nodes(): print(n)def show(H):nx.draw(H, with_labels=True, font_weight='bold')plt.show()#Use nx.to_numpy_matrix instead of nx.adjacency_matrix# M = nx.adjacency_matrix(D)# MT = nx.adjacency_matrix(T)M = nx.to_numpy_matrix(D)MT = nx.to_numpy_matrix(T)M2 = M@Mdef mPower(M, k): #M is numpy matrixassert k >= 1P = Mfor _ in range(k):P = P @ Mreturn Pdef tc(M):#compute transitive closurepassD1 = nx.DiGraph(M)D2 = nx.DiGraph(M2)print('Matrix for Original\n', M)N = nx.to_numpy_array(D,dtype=int)print('np_array for Original\n', N)print('\nMatrix for Transitive Closure\n', MT)N2 = nx.to_numpy_array(T,dtype=int)print('np_array for Transitive Closure\n', N2)show(D) #can use D, T, and numpy matrix power operationshow(T)show(T)
from collections import defaultdictdef combine_values(*dicts):res = defaultdict(list)for d in dicts:for key in d:res[key].append(d[key])return dict(res)d1 = {'a': 1, 'b': 'foo', 'c': 400}d2 = {'a': 3, 'b': 200, 'd': 400}combine_values(d1, d2) # {'a': [1, 3], 'b': ['foo', 200], 'c': [400], 'd': [400]}
print('hello, world')