Skip to main content

Mad libs generator

Nov 19, 2022CodeCatch
Loading...

More Python Posts

Currency Converter

Nov 19, 2022CodeCatch

0 likes • 6 views

""" Currency Converter
----------------------------------------
"""
import urllib.request
import json
def currency_converter(currency_from, currency_to, currency_input):
yql_base_url = "https://query.yahooapis.com/v1/public/yql"
yql_query = 'select%20*%20from%20yahoo.finance.xchange%20where%20pair' \
'%20in%20("'+currency_from+currency_to+'")'
yql_query_url = yql_base_url + "?q=" + yql_query + "&format=json&env=store%3A%2F%2Fdatatables.org%2Falltableswithkeys"
try:
yql_response = urllib.request.urlopen(yql_query_url)
try:
json_string = str(yql_response.read())
json_string = json_string[2:
json_string = json_string[:-1]
print(json_string)
yql_json = json.loads(json_string)
last_rate = yql_json['query']['results']['rate']['Rate']
currency_output = currency_input * float(last_rate)
return currency_output
except (ValueError, KeyError, TypeError):
print(yql_query_url)
return "JSON format error"
except IOError as e:
print(str(e))
currency_input = 1
#currency codes : http://en.wikipedia.org/wiki/ISO_4217
currency_from = "USD"
currency_to = "TRY"
rate = currency_converter(currency_from, currency_to, currency_input)
print(rate)

Create a Floyd’s Triangle

May 31, 2023CodeCatch

0 likes • 0 views

def generate_floyds_triangle(num_rows):
triangle = []
number = 1
for row in range(num_rows):
current_row = []
for _ in range(row + 1):
current_row.append(number)
number += 1
triangle.append(current_row)
return triangle
def display_floyds_triangle(triangle):
for row in triangle:
for number in row:
print(number, end=" ")
print()
# Prompt the user for the number of rows
num_rows = int(input("Enter the number of rows for Floyd's Triangle: "))
# Generate Floyd's Triangle
floyds_triangle = generate_floyds_triangle(num_rows)
# Display Floyd's Triangle
display_floyds_triangle(floyds_triangle)

delay time lambda

Nov 19, 2022CodeCatch

0 likes • 0 views

from time import sleep
def delay(fn, ms, *args):
sleep(ms / 1000)
return fn(*args)
delay(lambda x: print(x), 1000, 'later') # prints 'later' after one second

UNT CSCE 2100 Assignment 6

Nov 18, 2022AustinLeath

0 likes • 0 views

"""
Assignment 6
The goal is to make a graph of
who bit who and who was bitten.
There should be 10 nodes and 15 edges.
3 arrows of biting each other and
3 arrows of someone biting themselves.
Networkx can not do self biting
arrows, but it is in the code.
"""
from graphviz import Digraph as DDotGraph
from graphviz import Graph as UDotGraph
import networkx as nx
from networkx.algorithms.dag import transitive_closure
import graphviz as gv
import matplotlib.pyplot as plt
import numpy as np
from numpy.linalg import matrix_power
"""
class DGraph:
def __init__(self):
self.d = dict()
def clear(self):
self.d = dict()
def add_node(self,n):
if not self.d.get(n):
self.d[n] = set()
def add_edge(self,e):
f,t=e
self.add_node(f)
self.add_node(t)
vs=self.d.get(f)
if not vs:
self.d[f] = {t}
else:
vs.add(t)
def add_edges_from(self,es):
for e in es:
self.add_edge(e)
def edges(self):
for f in self.d:
for t in self.d[f]:
yield (f,t)
def number_of_nodes(self):
return len(self.d)
def __repr__(self):
return self.d.__repr__()
def show(self):
dot = gv.Digraph()
for e in self.edges():
#print(e)
f, t = e
dot.edge(str(f), str(t), label='')
#print(dot.source)
show(dot)
# displays graph with graphviz
def show(dot, show=True, file_name='graph.gv'):
dot.render(file_name, view=show)
def showGraph(g,label="",directed=True):
if directed:
dot = gv.Digraph()
else:
dot = gv.Graph()
for e in g.edges():
print(e)
f, t = e
dot.edge(str(f), str(t), label=label)
print(dot.source)
show(dot)
def bit():
G = DGraph()
G.add_edge(("Blade","Samara"))
G.add_edge(("Shadow","Wolfe"))
G.add_edge(("Raven", "Austin"))
G.add_edge(("Blade", "Alice"))
G.add_edge(("Alice","Brandon"))
G.add_edge(("Blade", "Wolfe"))
G.add_edge(("Samara", "Robin"))
G.add_edge(("Samara", "Raven"))
G.add_edge(("Samara", "Hamed"))
G.add_edge(("Wolfe", "Blade"))
G.add_edge(("Hamed", "Samara"))
G.add_edge(("Wolfe", "Shadow"))
G.add_edge(("Brandon", "Brandon"))
G.add_edge(("Hamed", "Hamed"))
G.add_edge(("Austin", "Austin"))
showGraph(G, label="bit")
bit()
def bitten():
G=DGraph()
G.add_edge(("Samara","Blade"))
G.add_edge(("Wolfe","Shadow"))
G.add_edge(("Austin", "Raven"))
G.add_edge(("Alice","Blade"))
G.add_edge(("Brandon", "Alice"))
G.add_edge(("Wolfe", "Blade" ))
G.add_edge(("Robin", "Samara"))
G.add_edge(("Raven", "Samara"))
G.add_edge(("Hamed", "Samara"))
G.add_edge(("Blade", "Wolfe"))
G.add_edge(("Samara", "Hamed"))
G.add_edge(("Shadow", "Wolfe"))
G.add_edge(("Brandon", "Brandon"))
G.add_edge(("Hamed", "Hamed"))
G.add_edge(("Austin", "Austin"))
showGraph(G, label="bitten by")
#bitten()
family = ["Blade", "Samara", "Shadow", "Wolfe", "Raven", "Alice"]
"""
#Do transitive closure call out and the
#matrix power operation should be the same
D = nx.DiGraph()
#D.add_nodes_from("SamaraBladeWolfeShadowAliceRavenBrandonRobinHamedAustin")
D.add_edge("Blade","Samara")
D.add_edge("Shadow","Wolfe")
D.add_edge("Raven", "Austin")
D.add_edge("Blade", "Alice")
D.add_edge("Alice","Brandon")
D.add_edge("Blade", "Wolfe")
D.add_edge("Samara", "Robin")
D.add_edge("Samara", "Raven")
D.add_edge("Samara", "Hamed")
D.add_edge("Wolfe", "Blade")
D.add_edge("Hamed", "Samara")
D.add_edge("Wolfe", "Shadow")
D.add_edge("Brandon", "Brandon")
D.add_edge("Hamed", "Hamed")
D.add_edge("Austin", "Austin")
T = transitive_closure(D)
for e in D.edges(): print(e)
for n in D.nodes(): print(n)
def show(H):
nx.draw(H, with_labels=True, font_weight='bold')
plt.show()
#Use nx.to_numpy_matrix instead of nx.adjacency_matrix
# M = nx.adjacency_matrix(D)
# MT = nx.adjacency_matrix(T)
M = nx.to_numpy_matrix(D)
MT = nx.to_numpy_matrix(T)
M2 = M@M
def mPower(M, k): #M is numpy matrix
assert k >= 1
P = M
for _ in range(k):
P = P @ M
return P
def tc(M):
#compute transitive closure
pass
D1 = nx.DiGraph(M)
D2 = nx.DiGraph(M2)
print('Matrix for Original\n', M)
N = nx.to_numpy_array(D,dtype=int)
print('np_array for Original\n', N)
print('\nMatrix for Transitive Closure\n', MT)
N2 = nx.to_numpy_array(T,dtype=int)
print('np_array for Transitive Closure\n', N2)
show(D) #can use D, T, and numpy matrix power operation
show(T)
show(T)

Using logic with sets

Nov 18, 2022AustinLeath

0 likes • 1 view

#Sets
U = {0,1,2,3,4,5,6,7,8,9}
P = {1,2,3,4}
Q = {4,5,6}
R = {3,4,6,8,9}
def set2bits(xs,us) :
bs=[]
for x in us :
if x in xs :
bs.append(1)
else:
bs.append(0)
assert len(us) == len(bs)
return bs
def union(set1,set2) :
finalSet = set()
bitList1 = set2bits(set1, U)
bitList2 = set2bits(set2, U)
for i in range(len(U)) :
if(bitList1[i] or bitList2[i]) :
finalSet.add(i)
return finalSet
def intersection(set1,set2) :
finalSet = set()
bitList1 = set2bits(set1, U)
bitList2 = set2bits(set2, U)
for i in range(len(U)) :
if(bitList1[i] and bitList2[i]) :
finalSet.add(i)
return finalSet
def compliment(set1) :
finalSet = set()
bitList = set2bits(set1, U)
for i in range(len(U)) :
if(not bitList[i]) :
finalSet.add(i)
return finalSet
def implication(a,b):
return union(compliment(a), b)
###########################################################################################
###################### Problems 1-6 #######################################
###########################################################################################
#p \/ (q /\ r) = (p \/ q) /\ (p \/ r)
def prob1():
return union(P, intersection(Q,R)) == intersection(union(P,Q), union(P,R))
#p /\ (q \/ r) = (p /\ q) \/ (p /\ r)
def prob2():
return intersection(P, union(Q,R)) == union(intersection(P,Q), intersection(P,R))
#~(p /\ q) = ~p \/ ~q
def prob3():
return compliment(intersection(P,R)) == union(compliment(P), compliment(R))
#~(p \/ q) = ~p /\ ~q
def prob4():
return compliment(union(P,Q)) == intersection(compliment(P), compliment(Q))
#(p=>q) = (~q => ~p)
def prob5():
return implication(P,Q) == implication(compliment(Q), compliment(P))
#(p => q) /\ (q => r) => (p => r)
def prob6():
return implication(intersection(implication(P,Q), implication(Q,R)), implication(P,R))
print("Problem 1: ", prob1())
print("Problem 2: ", prob2())
print("Problem 3: ", prob3())
print("Problem 4: ", prob4())
print("Problem 5: ", prob5())
print("Problem 6: ", prob6())
'''
Problem 1: True
Problem 2: True
Problem 3: True
Problem 4: True
Problem 5: True
Problem 6: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
'''

Propositional logic with itertools

Nov 18, 2022AustinLeath

0 likes • 5 views

from itertools import product
V='∀'
E='∃'
def tt(f,n) :
xss=product((0,1),repeat=n)
print('function:',f.__name__)
for xs in xss : print(*xs,':',int(f(*xs)))
print('')
# p \/ (q /\ r) = (p \/ q) /\ (p \/ r)
def prob1(p,q,r) :
x=p or (q and r)
y= (p or q) and (p or r)
return x==y
tt(prob1,3)
# p/\(q\/r)=(p/\q)\/(p/\r)
def prob2(p,q,r) :
x=p and ( q or r )
y=(p and q) or (p and r)
return x==y
tt(prob2,3)
#~(p/\q)=(~p\/~q)
def prob3(p,q) :
x=not (p and q)
y=(not p) or (not q)
return x==y
tt(prob3,2)
#(~(p\/q))=((~p)/\~q)
def prob4(p, q):
x = not(p or q)
y = not p and not q
return x == y
tt(prob4, 2)
#(p/\(p=>q)=>q)
def prob5(p,q):
x= p and ( not p or q)
return not x or q
tt(prob5,2)
# (p=>q)=((p\/q)=q)
def prob6(p,q) :
x = (not p or q)
y=((p or q) == q)
return x==y
tt(prob6,2)
#((p=>q)=(p\/q))=q
def prob7(p,q):
if ((not p or q)==(p or q))==q:
return 1
tt(prob7,2)
#(p=>q)=((p/\q)=p)
def prob8(p,q):
if (not p or q)==((p and q)==p):
return 1
tt(prob8,2)
#((p=>q)=(p/\q))=p
def prob9(p,q):
if ((not p or q)==(p and q))==p:
return '1'
tt(prob9,2)
#(p=>q)/\(q=>r)=>(p=>r)
def prob10(p,q,r) :
x = not ((not p or q) and (not q or r)) or (not p or r)
return x
tt(prob10, 3)
# (p = q) /\ (q => r) => (p => r)
#answer 1
def prob11(p,q,r) :
x = not((p is q) and (not q or r)) or (not p or r)
return x
tt(prob11, 3)
#(p=q)/\(q=>r)=>(p=>r)
#answer 2
def prob11(p,q,r):
x=(p==q) and (not q or r)
y=not p or r
return not x or y
tt(prob11,3)
#((p=>q)/\(q=r))=>(p=>r)
def prob12(p,q,r):
x=(not p or q) and ( q==r )
y=not p or r
return not x or y
tt(prob12,3)
#(p=>q)=>((p/\r)=>(q/\r))
def prob13(p,q,r):
x=not p or q
y=(not(p and r) or ( q and r))
return not x or y
tt(prob13,3)
#Question#2----------------------------------------
#(p=>q)=>r=p=>(q=>r)
def prob14(p,q,r):
x=(not(not p or q) or r)
y=(not p or (not q or r))
return x==y
tt(prob14,3)
def prob15(p, q):
x = not(p and q)
y = not p and not q
return x == y
tt(prob15, 2)
def prob16(p, q):
x = not(p or q)
y = not p or not q
return x == y
tt(prob16, 2)
def prob17(p):
x = p
y = not p
return x == y
tt(prob17, 1)