Skip to main content
Loading...

More Python Posts

class ProposalParser:
    """A class to parse IKE and ESP proposal strings into human-readable formats.

    This class supports parsing of IKE and ESP proposals, extracting encryption, hash, PRF (for IKE),
    and Diffie-Hellman (DH) group information. It also handles the concatenation of these components
    into a structured format, indicating whether Perfect Forward Secrecy (PFS) is enabled for ESP proposals.
    The parser uses predefined mappings for DH groups, encryption algorithms, hash functions, and Pseudo-Random Functions (PRFs).
    It can process a list of proposals and return a formatted string summarizing the cryptographic parameters.

    Attributes:
        dh_mapping (dict): A mapping of Diffie-Hellman groups to their corresponding identifiers
        enc_mapping (dict): A mapping of encryption algorithms to their corresponding identifiers
        hash_mapping (dict): A mapping of hash functions to their corresponding identifiers
        prf_mapping (dict): A mapping of Pseudo-Random Functions to their corresponding identifiers
    """

    def __init__(self):
        """Initialize the parser with mappings for DH groups, encryption, hash, and PRF."""
        self.dh_mapping = {
            'MODP_768': '1',  # RFC 2409: 768-bit MODP group (Group 1), considered weak by modern standards
            'MODP_1024': '2',  # RFC 2409: 1024-bit MODP group (Group 2), considered weak today
            'MODP_1536': '5',  # RFC 3526: 1536-bit MODP group (Group 5), stronger than Groups 1 and 2
            'MODP_2048': '14',  # RFC 3526: 2048-bit MODP group (Group 14), commonly used for modern IKE
            'MODP_3072': '15',  # RFC 3526: 3072-bit MODP group (Group 15), high security
            'MODP_4096': '16',  # RFC 3526: 4096-bit MODP group (Group 16), suitable for high-security applications
            'MODP_6144': '17',  # RFC 3526: 6144-bit MODP group (Group 17), very high security, less common
            'MODP_8192': '18',  # RFC 3526: 8192-bit MODP group (Group 18), highest MODP group, rarely used
            'ECP_256': '19',  # RFC 5903: 256-bit ECP group (NIST P-256, Group 19), efficient elliptic curve
            'ECP_384': '20',  # RFC 5903: 384-bit ECP group (NIST P-384, Group 20), stronger elliptic curve
            'ECP_521': '21',  # RFC 5903: 521-bit ECP group (NIST P-521, Group 21), high-security elliptic curve
            'ECP_192': '25',  # RFC 5903: 192-bit ECP group (NIST P-192, Group 25), weaker elliptic curve
            'ECP_224': '26',  # RFC 5903: 224-bit ECP group (NIST P-224, Group 26), intermediate security
            'MODP_1024_160': '22',  # RFC 5114: 1024-bit MODP with 160-bit subgroup (Group 22), less common
            'MODP_2048_224': '23',  # RFC 5114: 2048-bit MODP with 224-bit subgroup (Group 23), enhanced security
            'MODP_2048_256': '24',  # RFC 5114: 2048-bit MODP with 256-bit subgroup (Group 24), enhanced security
            'FFDHE_2048': '256',  # RFC 7919: 2048-bit FFDHE group, secure Diffie-Hellman parameters
            'FFDHE_3072': '257',  # RFC 7919: 3072-bit FFDHE group, secure Diffie-Hellman parameters
            'FFDHE_4096': '258',  # RFC 7919: 4096-bit FFDHE group, secure Diffie-Hellman parameters
            'FFDHE_6144': '259',  # RFC 7919: 6144-bit FFDHE group, secure Diffie-Hellman parameters
            'FFDHE_8192': '260',  # RFC 7919: 8192-bit FFDHE group, secure Diffie-Hellman parameters
            'ECP_224_BP': '27',  # RFC 6460: 224-bit Brainpool ECP group, alternative elliptic curve
            'ECP_256_BP': '28',  # RFC 6460: 256-bit Brainpool ECP group, alternative elliptic curve
            'ECP_384_BP': '29',  # RFC 6460: 384-bit Brainpool ECP group, alternative elliptic curve
            'ECP_512_BP': '30',  # RFC 6460: 512-bit Brainpool ECP group, alternative elliptic curve
            'CURVE_25519': '31',  # RFC 8031: Curve25519, modern elliptic curve for high-speed cryptography
            'CURVE_448': '32',  # RFC 8031: Curve448, modern elliptic curve for high-security cryptography
        }

        self.enc_mapping = {
            'AES_CBC_128': 'AES128',  # RFC 3602: AES-CBC with 128-bit key, standard encryption for IPsec
            'AES_CBC_192': 'AES192',  # RFC 3602: AES-CBC with 192-bit key, less common but supported
            'AES_CBC_256': 'AES256',  # RFC 3602: AES-CBC with 256-bit key, widely used for high security
            'AES_GCM_16_128': 'AES128-GCM-16',  # RFC 4106: AES-GCM with 128-bit key, 16-byte ICV
            'AES_GCM_16_192': 'AES192-GCM-16',  # RFC 4106: AES-GCM with 192-bit key, 16-byte ICV
            'AES_GCM_16_256': 'AES256-GCM-16',  # RFC 4106: AES-GCM with 256-bit key, 16-byte ICV
            'AES_GCM_8_128': 'AES128-GCM-8',  # RFC 4106: AES-GCM with 128-bit key, 8-byte ICV
            'AES_GCM_8_256': 'AES256-GCM-8',  # RFC 4106: AES-GCM with 256-bit key, 8-byte ICV
            'AES_GCM_12_128': 'AES128-GCM-12',  # RFC 4106: AES-GCM with 128-bit key, 12-byte ICV
            'AES_GCM_12_256': 'AES256-GCM-12',  # RFC 4106: AES-GCM with 256-bit key, 12-byte ICV
            'AES_CCM_16_128': 'AES128-CCM-16',  # RFC 4309: AES-CCM with 128-bit key, 16-byte ICV
            'AES_CCM_16_256': 'AES256-CCM-16',  # RFC 4309: AES-CCM with 256-bit key, 16-byte ICV
            'AES_CTR_128': 'AES128-CTR',  # RFC 3686: AES-CTR with 128-bit key, stream cipher mode
            'AES_CTR_192': 'AES192-CTR',  # RFC 3686: AES-CTR with 192-bit key, stream cipher mode
            'AES_CTR_256': 'AES256-CTR',  # RFC 3686: AES-CTR with 256-bit key, stream cipher mode
            '3DES_CBC': '3DES',  # RFC 2451: Triple DES in CBC mode, legacy encryption
            'DES_CBC': 'DES',  # RFC 2405: DES in CBC mode, considered insecure today
            'CAMELLIA_CBC_128': 'CAMELLIA128',  # RFC 5529: Camellia-CBC with 128-bit key
            'CAMELLIA_CBC_256': 'CAMELLIA256',  # RFC 5529: Camellia-CBC with 256-bit key
            'CHACHA20_POLY1305': 'CHACHA20-POLY1305',  # RFC 7634: ChaCha20 with Poly1305, modern AEAD cipher
            'BLOWFISH_CBC': 'BLOWFISH',  # RFC 2451: Blowfish in CBC mode, legacy and less secure
            'CAST5_CBC': 'CAST5',  # RFC 2144: CAST-128 in CBC mode, legacy encryption
        }

        self.hash_mapping = {
            'HMAC_MD5': 'MD5',  # RFC 2403: HMAC-MD5, considered weak by modern standards
            'HMAC_MD5_96': 'MD5',  # RFC 2403: HMAC-MD5 with 96-bit truncation, weak
            'HMAC_SHA1': 'SHA1',  # RFC 2404: HMAC-SHA1, widely used but aging
            'HMAC_SHA1_96': 'SHA1',  # RFC 2404: HMAC-SHA1 with 96-bit truncation
            'HMAC_SHA2_256': 'SHA2-256',  # RFC 4868: HMAC-SHA256, strong hash function
            'HMAC_SHA2_256_128': 'SHA2-256',  # RFC 4868: HMAC-SHA256 with 128-bit truncation
            'HMAC_SHA2_384': 'SHA2-384',  # RFC 4868: HMAC-SHA384, stronger hash function
            'HMAC_SHA2_384_192': 'SHA2-384',  # RFC 4868: HMAC-SHA384 with 192-bit truncation
            'HMAC_SHA2_512': 'SHA2-512',  # RFC 4868: HMAC-SHA512, very strong hash function
            'HMAC_SHA2_512_256': 'SHA2-512',  # RFC 4868: HMAC-SHA512 with 256-bit truncation
            'HMAC_SHA3_224': 'SHA3-224',  # RFC 8446 (TLS context): SHA3-224, modern hash function, experimental for the most part
            'HMAC_SHA3_256': 'SHA3-256',  # RFC 8446 (TLS context): SHA3-256, modern hash function, experimental for the most part
            'HMAC_SHA3_384': 'SHA3-384',  # RFC 8446 (TLS context): SHA3-384, modern hash function, experimental for the most part
            'HMAC_SHA3_512': 'SHA3-512',  # RFC 8446 (TLS context): SHA3-512, modern hash function, experimental for the most part
            'AES_GMAC_128': 'GMAC-128',  # RFC 4543: AES-GMAC with 128-bit key, for authentication
            'AES_GMAC_192': 'GMAC-192',  # RFC 4543: AES-GMAC with 192-bit key, for authentication
            'AES_GMAC_256': 'GMAC-256',  # RFC 4543: AES-GMAC with 256-bit key, for authentication
            'POLY1305': 'POLY1305',  # RFC 7539: Poly1305, used with ChaCha20 for authentication
        }

        self.prf_mapping = {
            'PRF_HMAC_MD5': 'MD5',  # RFC 2403 (via IKEv1): HMAC-MD5 PRF, weak by modern standards
            'PRF_HMAC_SHA1': 'SHA1',  # RFC 2404 (via IKEv1): HMAC-SHA1 PRF, widely used but aging
            'PRF_HMAC_SHA2_256': 'SHA2-256',  # RFC 4868: HMAC-SHA256 PRF, strong and common
            'PRF_HMAC_SHA2_384': 'SHA2-384',  # RFC 4868: HMAC-SHA384 PRF, stronger PRF
            'PRF_HMAC_SHA2_512': 'SHA2-512',  # RFC 4868: HMAC-SHA512 PRF, very strong PRF
            'PRF_AES128_CMAC': 'AES128-CMAC',  # RFC 4494: AES-CMAC with 128-bit key, secure PRF
            'PRF_AES128_XCBC': 'AES128-XCBC',  # RFC 4434: AES-XCBC PRF, alternative to CMAC
            'PRF_HMAC_SHA3_224': 'SHA3-224',  # RFC 8446 (TLS context): SHA3-224 PRF, modern algorithm, experimental for the most part
            'PRF_HMAC_SHA3_256': 'SHA3-256',  # RFC 8446 (TLS context): SHA3-256 PRF, modern algorithm, experimental for the most part
            'PRF_HMAC_SHA3_384': 'SHA3-384',  # RFC 8446 (TLS context): SHA3-384 PRF, modern algorithm, experimental for the most part
            'PRF_HMAC_SHA3_512': 'SHA3-512',  # RFC 8446 (TLS context): SHA3-512 PRF, modern algorithm, experimental for the most part
        }

    def _categorize_component(self, component, is_ike):
        """Categorize a proposal component into encryption, hash, PRF, or DH group."""
        enc_keywords = ['AES_CBC', 'AES_GCM', 'AES_CTR', 'CHACHA20', 'BLOWFISH', 'CAST5', 'DES', '3DES', 'CAMELLIA']
        hash_keywords = ['HMAC_SHA', 'HMAC_MD5', 'POLY1305', 'AES_GMAC']
        dh_keywords = ['MODP_', 'ECP_', 'FFDHE_', 'CURVE_']

        if (component in self.enc_mapping or any(s in component for s in enc_keywords)):
            return 'encryption', component
        elif is_ike and 'PRF_' in component:
            return 'prf', component
        elif (component in self.hash_mapping or any(s in component for s in hash_keywords)) and not component.startswith("PRF_"):
            return 'hash', component
        elif (component in self.dh_mapping or any(s in component for s in dh_keywords)):
            return 'dh_group', component
        elif component == 'NO_EXT_SEQ':
            return 'skip', component
        else:
            return 'unknown', component

    def _map_encryption(self, enc_components, result):
        """Map encryption components to their corresponding identifiers."""
        for enc in enc_components:
            mapped_enc = self.enc_mapping.get(enc, 'Unknown')
            if mapped_enc != 'Unknown' and mapped_enc not in result['encryption']:
                result['encryption'].append(mapped_enc)

    def _map_hash_and_prf(self, enc_components, hash_components, prf_components, result):
        """Map hash and PRF components, handling AEAD ciphers."""
        # Map hash components (skip for AEAD ciphers like AES-GCM, AES-CCM, CHACHA20-POLY1305)
        if not any(enc.startswith('AES_GCM') or enc.startswith('AES_CCM') or enc == 'CHACHA20_POLY1305' for enc in enc_components):
            for hash_val in hash_components:
                mapped_hash = self.hash_mapping.get(hash_val, 'Unknown')
                if mapped_hash not in result['hash']:
                    result['hash'].append(mapped_hash)
        else:
            result['hash'].append('None')

        # Map PRF components
        for prf in prf_components:
            mapped_prf = self.prf_mapping.get(prf, 'Unknown')
            if mapped_prf not in result['prf']:
                result['prf'].append(mapped_prf)

    def _map_dh_group(self, dh_components, result):
        """Map Diffie-Hellman group components to their corresponding identifiers."""
        for dh in dh_components:
            mapped_dh = self.dh_mapping.get(dh)
            if mapped_dh != 'None' and mapped_dh not in result['dh_group']:
                result['dh_group'].append(mapped_dh)

    def parse_ike_proposal(self, proposal):
        """
        Parse an IKE or ESP proposal string into a structured format.

        Args:
            proposal (str): The proposal string, e.g., "IKE:AES_CBC_256/HMAC_SHA2_256/PRF_HMAC_SHA2_256/MODP_2048"

        Returns:
            dict: A dictionary with keys 'encryption', 'hash', 'prf', and 'dh_group'
        """
        # Split the proposal into components based on '/'
        components = proposal.split('/')

        result = {
            'encryption': [],
            'hash': [],
            'prf': [],
            'dh_group': []
        }

        is_ike = proposal.startswith('IKE:')
        is_esp = proposal.startswith('ESP:')

        # Remove IKE or ESP prefix if present for easier parsing
        if is_ike or is_esp:
            components[0] = components[0].replace('IKE:', '').replace('ESP:', '')

        enc_components = []
        hash_components = []
        prf_components = []
        dh_components = []
        unknown_components = []

        # Categorize components
        for component in components:
            category, value = self._categorize_component(component, is_ike)
            if category == 'encryption':
                enc_components.append(value)
            elif category == 'hash':
                hash_components.append(value)
            elif category == 'prf':
                prf_components.append(value)
            elif category == 'dh_group':
                dh_components.append(value)
            elif category == 'unknown':
                unknown_components.append(value)

        # Map components to their identifiers
        self._map_encryption(enc_components, result)
        self._map_hash_and_prf(enc_components, hash_components, prf_components, result)
        self._map_dh_group(dh_components, result)

        # Handle ESP case (no PRF for ESP proposals)
        if is_esp:
            result['prf'] = ['None']

        # Set defaults if no valid components found
        if not result['encryption']:
            result['encryption'] = ['Unknown']
        if not result['hash']:
            result['hash'] = ['None']
        if not result['prf']:
            result['prf'] = ['None']
        if not result['dh_group']:
            result['dh_group'] = ['None']

        return result

    def collect_components(self, proposals):
        """Collect unique encryption, hash, PRF, and DH group components from a list of proposals."""
        enc_set = set()
        hash_set = set()
        prf_set = set()
        dh_set = set()
        all_aead = True

        for proposal in proposals:
            parsed = self.parse_ike_proposal(proposal.strip())
            enc_set.update(parsed['encryption'])
            
            # Check if the proposal uses a non-AEAD cipher
            if not any('GCM' in enc or 'CCM' in enc or 'CHACHA20' in enc for enc in parsed['encryption']):
                hash_set.update(parsed['hash'])
                all_aead = False
            prf_set.update(parsed['prf'])
            if parsed['dh_group'] != ['None']:
                dh_set.update(parsed['dh_group'])

        # If all proposals are AEAD, set hash to "None"
        if all_aead and not hash_set:
            hash_set.add('None')

        return enc_set, hash_set, prf_set, dh_set

    def format_output(self, enc_set, hash_set, prf_set, dh_set, is_ike):
        """Format the collected components into a human-readable string."""
        # Convert sets to sorted lists
        enc_list = sorted(list(enc_set))
        hash_list = sorted(list(hash_set))
        prf_list = sorted(list(prf_set))
        dh_list = sorted(list(dh_set), key=lambda x: int(x))

        # Determine PFS status for ESP proposals only
        pfs_status = "PFS: Enabled" if dh_set and not is_ike else "PFS: None"

        # Format output as a single concatenated string
        enc_part = f"Encryption: {', '.join(enc_list)}" if enc_list else "Encryption: None"
        hash_part = f"Hash: {', '.join(hash_list)}" if hash_list else "Hash: None"
        dh_part = f"DH Group(s): {', '.join(dh_list)}" if dh_list else "DH Group(s): None"
        prf_part = f"PRF: {', '.join(prf_list)}" if prf_list else "PRF: None"

        # Return formatted string based on whether it's an IKE or ESP proposal
        if is_ike:
            return f"{enc_part} {hash_part} {prf_part} {dh_part}"
        else:
            return f"{enc_part} {hash_part} {dh_part} {pfs_status}"

    def process_proposals(self, proposal_list):
        """
        Process a list of IKE or ESP proposals, concatenating encryption, hash, PRF (for IKE only),
        and DH group values, and indicate whether PFS is enabled for ESP proposals only.

        Args:
            proposal_list (str): Comma-separated string of IKE or ESP proposals

        Returns:
            str: Formatted string with concatenated encryption, hash, PRF (for IKE), DH groups, and PFS status (for ESP)
        """
        if proposal_list is None:
            return "No proposals provided"

        if not proposal_list:
            return "No proposals provided"

        if not (proposal_list.startswith('IKE:') or proposal_list.startswith('ESP:')):
            return "Invalid proposal format. Proposals must be of type 'IKE' for Phase 1 or 'ESP' for Phase 2"

        proposal_list = proposal_list.replace(',', ', ')
        proposals = proposal_list.strip().split(', ')
        is_ike = any(proposal.startswith('IKE:') for proposal in proposals)

        enc_set, hash_set, prf_set, dh_set = self.collect_components(proposals)
        return self.format_output(enc_set, hash_set, prf_set, dh_set, is_ike)
# Example usage
if __name__ == "__main__":
    parser = ProposalParser()

    # unknown_hash = "IKE:AES_CBC_256/HMAC_SHA22222/PRF_HMAC_SHA2_256/MODP_2048"
    # none_hash = "IKE:AES_CBC_256/PRF_HMAC_SHA2_256/MODP_2048"

    # # Outputs: Encryption: AES256 Hash: None PRF: SHA2-256 DH Group(s): 14
    # print(parser.process_proposals(unknown_hash))

    # # Outputs: Encryption: AES256 Hash: None PRF: SHA2-256 DH Group(s): 14
    # print(parser.process_proposals(none_hash))

    proposal = "IKE:AES_GCM_16_256/MODP_2048/NO_EXT_SEQ"

    print(parser.process_proposals(proposal))
import logging
import os
import re
import subprocess
import time
import json
from typing import Optional, Tuple, List, Dict, Any
from glob import glob
from datetime import datetime


class BGPRouteParser():
    bgp_route_pattern = r'^\*>\s+(\S+)\s+(\S+)\s+(\d+)\s+(\d+)\s+(.+)$'


    def _normalize_network_cidr(self, network: str) -> str:
        """Normalize network address by adding appropriate CIDR notation.
        
        Args:
            network: Network address (e.g., "172.31.0.0" or "172.16.0.1/32")
            
        Returns:
            Network address with appropriate CIDR notation
        """
        if '/' in network:
            return network
            
        try:
            octets = network.split('.')
            if len(octets) != 4:
                return network  # Invalid IP format or IPv6, return as-is

            # Determine CIDR based on trailing zero pattern

            # Check for default route
            if network == '0.0.0.0':
                return '0.0.0.0/0'

            if octets[1:] == ['0', '0', '0']:
                return f"{network}/8"

            if octets[2:] == ['0', '0']:
                return f"{network}/16"

            if octets[3] == '0':
                return f"{network}/24"

        except (ValueError, IndexError):
            return network
        

    def _parse_as_path(self, path_info: str) -> str:
        """Extract AS path from BGP path information.
        
        Args:
            path_info: Raw path information from BGP output
            
        Returns:
            Cleaned AS path string
        """
        path_info = path_info.strip()
        
        # Handle internal routes
        if path_info == 'i':
            return str(self.headend_config.local_bgp_asn)
            
        # Extract AS numbers using list comprehension
        path_parts = path_info.split()
        as_numbers = [part for part in path_parts if part.isdigit()]
        
        return ' '.join(as_numbers)

    def _parse_route_line(self, line: str) -> Optional[Dict[str, Any]]:
        """Parse a single BGP route line (IPv4 format).
        
        Args:
            line: BGP route line from show command output
            
        Returns:
            Route dictionary or None if parsing fails
        """
        
        match = re.match(self.bgp_route_pattern, line)
        if not match:
            return None
            
        network, next_hop, metric_str, weight_str, path_info = match.groups()
        
        try:
            return {
                "network": self._normalize_network_cidr(network),
                "nextHopIp": next_hop,
                "med": int(metric_str),
                "localPref": 100, # Always 100 for learned routes on PEs
                "weight": int(weight_str),
                "asPath": self._parse_as_path(path_info)
            }
        except ValueError as e:
            logging.warning(f"Failed to parse route line '{line}': {e}")
            return None

    def _parse_ipv6_route_block(self, lines: List[str], start_idx: int) -> Tuple[Optional[Dict[str, Any]], int]:
        """Parse a multi-line IPv6 BGP route block.
        
        Args:
            lines: List of all output lines
            start_idx: Index of the first line of the route block
            
        Returns:
            Tuple of (route dictionary or None, next line index to process)
        """
        if start_idx >= len(lines):
            return None, start_idx + 1
            
        # First line: *> network
        first_line = lines[start_idx].strip()
        if not first_line.startswith('*>'):
            return None, start_idx + 1
            
        # Extract network from first line
        network_match = re.match(r'^\*>\s+(\S+)$', first_line)
        if not network_match:
            return None, start_idx + 1
            
        network = network_match.group(1)
        
        # Second line: next hop (indented)
        if start_idx + 1 >= len(lines):
            return None, start_idx + 1
            
        second_line = lines[start_idx + 1].strip()
        if not second_line or second_line.startswith('*>'):
            # This might be a single-line IPv6 route or malformed
            return None, start_idx + 1
            
        next_hop = second_line
        
        # Third line: metric, locprf, weight, path (indented)
        if start_idx + 2 >= len(lines):
            return None, start_idx + 2
            
        third_line = lines[start_idx + 2].strip()
        if not third_line or third_line.startswith('*>'):
            # Malformed route block
            return None, start_idx + 2
            
        # Parse the third line: metric locprf weight path
        path_parts = third_line.split()
        if len(path_parts) < 4:
            return None, start_idx + 3
            
        try:
            metric_str = path_parts[0]
            # Skip locprf (path_parts[1]) as it's empty or not used
            weight_str = path_parts[-2]  # Second to last element
            path_info = path_parts[-1]   # Last element
            
            return {
                "network": self._normalize_network_cidr(network),
                "nextHopIp": next_hop,
                "med": int(metric_str),
                "localPref": 100, # Always 100 for learned routes on PEs
                "weight": int(weight_str),
                "asPath": self._parse_as_path(path_info)
            }, start_idx + 3
            
        except (ValueError, IndexError) as e:
            logging.warning(f"Failed to parse IPv6 route block starting at line {start_idx}: {e}")
            return None, start_idx + 3

    def _find_route_start_index(self, lines: List[str]) -> Optional[int]:
        """Find the index where BGP routes start in the output.
        
        Args:
            lines: List of output lines
            
        Returns:
            Index of first route line or None if not found
        """
        for i, line in enumerate(lines):
            if 'Network' in line and 'Next Hop' in line:
                return i + 1
        return None

    def _get_ipv4_bgp_routes(self) -> List[Dict[str, Any]]:
        """Parse IPv4 BGP route table output and return structured data.
        
        Returns:
            List of IPv4 BGP routes
        """
        try:
            output = """BGP table version is 0, local router ID is 169.254.148.249
    Status codes: s suppressed, d damped, h history, * valid, > best, i - internal,
                r RIB-failure, S Stale, R Removed
    Origin codes: i - IGP, e - EGP, ? - incomplete

    Network          Next Hop            Metric LocPrf Weight Path
    *> 172.16.0.1/32   169.254.50.85         0             0 65000 i


    Total number of prefixes 2"""
            
            # Check if command output is valid
            if not output or not output.strip():
                logging.warning("IPv4 BGP command returned empty output")
                return []
            
            lines = output.strip().split('\n')
            route_start_idx = self._find_route_start_index(lines)
            
            if route_start_idx is None:
                logging.warning("IPv4 BGP output does not contain expected header format")
                return []
            
            # Parse routes using list comprehension and filter
            route_lines = [
                line.strip() for line in lines[route_start_idx:]
                if line.strip() and line.strip().startswith('*>') 
                and not line.strip().startswith('Total number')
            ]
            
            # Parse routes and convert to dictionaries
            routes = []
            for line in route_lines:
                route = self._parse_route_line(line)
                if route is not None:
                    routes.append(route)
            
            return routes
            
        except Exception as e:
            logging.error(f"Failed to get IPv4 BGP routes: {e}")
            return []

    def _get_ipv6_bgp_routes(self) -> List[Dict[str, Any]]:
        """Parse IPv6 BGP route table output and return structured data.
        
        Returns:
            List of IPv6 BGP routes
        """
        try:
            output = """BGP table version is 0, local router ID is 169.254.148.249
    Status codes: s suppressed, d damped, h history, * valid, > best, i - internal,
                r RIB-failure, S Stale, R Removed
    Origin codes: i - IGP, e - EGP, ? - incomplete

    Network          Next Hop            Metric LocPrf Weight Path
    *> 2600:1702:5fc0:8792::/64
                        fd1c:a349:ac38:7ea1:792e:e716:baa1:52b6
                                                0             0 65000 i
    *> 2600:4700:4700::1111/128
                        fd1c:a349:ac38:7ea1:792e:e716:baa1:52b5
                                            100         32768 i

    Total number of prefixes 2"""
            
            # Check if command output is valid
            if not output or not output.strip():
                logging.warning("IPv6 BGP command returned empty output")
                return []
            
            lines = output.strip().split('\n')
            route_start_idx = self._find_route_start_index(lines)
            
            if route_start_idx is None:
                logging.warning("IPv6 BGP output does not contain expected header format")
                return []
            
            # Parse IPv6 routes (multi-line format)
            routes = []
            i = route_start_idx
            
            while i < len(lines):
                line = lines[i].strip()
                
                # Skip empty lines and total count lines
                if not line or line.startswith('Total number'):
                    i += 1
                    continue
                    
                # Process route blocks starting with *>
                if line.startswith('*>'):
                    route, next_idx = self._parse_ipv6_route_block(lines, i)
                    if route is not None:
                        routes.append(route)
                    i = next_idx
                else:
                    i += 1
            
            return routes
            
        except Exception as e:
            logging.error(f"Failed to get IPv6 BGP routes: {e}")
            return []

    def _get_all_bgp_routes(self) -> Dict[str, List[Dict[str, Any]]]:
        """Parse both IPv4 and IPv6 BGP route table outputs and return structured data.
        
        Returns:
            Dictionary containing list of all BGP routes (IPv4 and IPv6 combined)
        """
        try:
            # Get IPv4 routes
            ipv4_routes = self._get_ipv4_bgp_routes()
            
            # Get IPv6 routes
            ipv6_routes = self._get_ipv6_bgp_routes()
            
            # Combine all routes
            all_routes = ipv4_routes + ipv6_routes
            
            logging.debug(f"Retrieved {len(ipv4_routes)} IPv4 routes and {len(ipv6_routes)} IPv6 routes")
            
            return {"routes": all_routes}
            
        except Exception as e:
            logging.error(f"Failed to get all BGP routes: {e}")
            return {"routes": []}

    def _get_specific_network(self, bgp_properties: Dict[str, Any], prefix: str) -> Dict[str, Any]:
        """Find specific network in BGP properties.
        
        Args:
            bgp_properties: BGP properties dictionary
            prefix: Network prefix to search for
            
        Returns:
            Route information dictionary or empty dict if not found
        """
        if not bgp_properties or not isinstance(bgp_properties, dict):
            logging.warning(f"Invalid BGP properties: {type(bgp_properties)}")
            return {}
            
        routes = bgp_properties.get("routes", [])
        logging.debug(f"Searching for prefix '{prefix}' in {len(routes)} routes")
        
        # Use next() with generator expression for efficient search
        try:
            route = next(
                route for route in routes 
                if route.get("network") == prefix
            )
            logging.debug(f"Found matching route for prefix '{prefix}': {route}")
            return route
        except StopIteration:
            logging.debug(f"No route found for prefix '{prefix}'")
            return {}


def main():
    """Main function to demonstrate BGP route parsing."""
    # Configure logging
    logging.basicConfig(
        level=logging.INFO,
        format='%(asctime)s - %(levelname)s - %(message)s'
    )
    
    # Create parser instance
    parser = BGPRouteParser()
    
    # Get BGP routes
    print("Parsing BGP routes...")
    routes_data = parser._get_all_bgp_routes()
    
    # Display results
    print(f"Found {len(routes_data['routes'])} BGP routes:")
    print("-" * 50)
    
    for i, route in enumerate(routes_data['routes'], 1):
        print(f"Route {route}:")

    
    return routes_data


if __name__ == "__main__":
    main()