Loading...
More C++ Posts
/*Good morning! Here's your coding interview problem for today.This problem was asked by LinkedIn.A wall consists of several rows of bricks of various integer lengths and uniform height. Your goal is to find a vertical line going from the top to the bottom of the wall that cuts through the fewest number of bricks. If the line goes through the edge between two bricks, this does not count as a cut.For example, suppose the input is as follows, where values in each row represent the lengths of bricks in that row:[[3, 5, 1, 1],[2, 3, 3, 2],[5, 5],[4, 4, 2],[1, 3, 3, 3],[1, 1, 6, 1, 1]]The best we can we do here is to draw a line after the eighth brick, which will only require cutting through the bricks in the third and fifth row.Given an input consisting of brick lengths for each row such as the one above, return the fewest number of bricks that must be cut to create a vertical line.AUTHORS NOTE:Makes following assumptions:- Each row is same length- Data is in file called "data.dat" and formatted in space-separated rows- The cuts at the beginning and end of the wall are not solutionsThis requires the following file named data.dat that is a space separated file, or similar formatted file:----START FILE----3 5 1 12 3 3 25 54 4 21 3 3 31 1 6 1 1----END FILE----*/#include <algorithm>#include <iostream>#include <fstream>#include <map>#include <sstream>#include <string>#include <vector>using namespace std;int main(){vector<vector<int>> wall;ifstream in;in.open("data.dat");if(!in.good()){cout << "ERROR: File failed to open properly.\n";}/* Get input from space separated file */string line;while(!in.eof()){getline(in, line);int i;vector<int> currv;stringstream strs(line);while(strs >> i)currv.push_back(i);wall.push_back(currv);}/* Convert each value from "length of brick" to "position at end of brick" */for(int y = 0; y < wall.size(); y++){wall.at(y).pop_back(); //Delet last valfor(int x = 1; x < wall.at(y).size(); x++) //Skip the first bc data doesn't need changewall.at(y).at(x) += wall.at(y).at(x-1);}/* Check output. COMMENT OUT */// for(auto row : wall)// {// for(int pos : row)// cout << pos << " ";// cout << endl;// }/* Determine which ending position is most common, and cut there *///Exclude final position, which will be the size of the wallint mode = -1;int amt = -1;vector<int> tried;for(auto row : wall){for(int pos : row) //For each pos in the wall{//Guard. If pos is contained in the list, skip posif(find(tried.begin(), tried.end(), pos) != tried.end())continue;tried.push_back(pos);/* Cycle through each row to see if it contains the pos */int curramt = 0;for(auto currrow : wall){if( find( currrow.begin(), currrow.end(), pos ) != currrow.end() )curramt++;}//cout << pos << " " << curramt << endl;if(curramt > amt){amt = curramt;mode = pos;}}}cout << "Please cut at position " << mode << endl;cout << "This will cut through " << (wall.size() - amt) << " bricks." << endl;return 0;}
/*this program will simulate the spreading of a disease through agrid of people, starting from a user-defined person. It will countthe number of turns taken before everyone on the grid is immunizedto the disease after having caught it once.This program will user the SIR model (Susceptible, Infectious, Recovered)and cellular automata to simulate the people in the grid.*/#include <iostream>using namespace std;/* Any and all global variables */const int SIZE = 8; //Size of the square person array/* Any and all functions */void gridDefaultify(char[][SIZE], int);//Purpose: Sets each item in the person array to 's'//Parameters: A square, two-dimensional array// The size of that array's boundsvoid gridDisplay(char[][SIZE], int);//Purpose: Formats and prints the information in the person grid//Parameters: A square, two-dimensional array// The value of the current dayvoid nextTurn(char[][SIZE], char[][SIZE], int&);//Purpose: Updates the grid of people, and the current day//Parameters: Two square, two-dimensional arrays// A reference to the current day (so that it can be updated)int countInfected(char[][SIZE], int);//Purpose: Counts the number of infectious people on the grid//Parameters: A square, two-dimensional array// The size of that array's boundsint main(){int currentDay = 0; //Infection begins on day 0, and ends one day after the last person is Recoveredchar gridCurrent[SIZE][SIZE]; //Grid of all peoplechar gridUpdate[SIZE][SIZE]; //Where the user chooses to start the infectionint xToInfect;int yToInfect; //Set of coordinates for the initial infection position, given by user//Initializes the grids to all 's'gridDefaultify(gridCurrent, SIZE);gridDefaultify(gridUpdate, SIZE);//The below block gets the initial infection coordinates from the usercout << "Please enter a location to infect: ";while(true){cin >> xToInfect >> yToInfect;xToInfect--;yToInfect--;if(xToInfect < 0 || yToInfect < 0 || xToInfect >= SIZE || yToInfect >= SIZE){cout << "Those coordinates are outside the bounds of this region." << endl;cout << "Please enter another location to infect: ";continue;} else {gridCurrent[xToInfect][yToInfect] = 'i';break;}}//Displays the initial state of the gridgridDisplay(gridCurrent, currentDay);//The below block will display and update the grid until the infection is done.while(true){nextTurn(gridCurrent, gridUpdate, currentDay);gridDisplay(gridCurrent, currentDay);if(countInfected(gridCurrent, SIZE) == 0) break; //Once there are no more infected, the game is done}//Displays the number of days taken for the infection to endcout << "It took " << currentDay + 1 << " days for the outbreak to end";cout << endl;return 0;}void gridDefaultify(char arr[][SIZE], int arrSize){for(int x = 0; x < arrSize; x++){for(int y = 0; y < arrSize; y++){arr[x][y] = 's'; //Sets all items in the passed-in array to 's'}}return;}void gridDisplay(char arr[][SIZE], int day){cout << "Day " << day << endl; //Prints the current dayfor(int x = 0; x < SIZE; x++){for(int y = 0; y < SIZE; y++){cout << arr[x][y] <<" "; //Prints the array's contents}cout << endl; //Formats with newlines}cout << endl; //Some spacingreturn;}void nextTurn(char today[][SIZE], char update[][SIZE], int& day){day++; //Updates the dayint xCheck; //X coordinate to be checkedint yCheck; //Y coordinate to be checkedfor(int x = 0; x < SIZE; x++){for(int y = 0; y < SIZE; y++){//Sets all 'i' to 'r' in the new gridif(today[x][y] == 'i' || today[x][y] == 'r'){update[x][y] = 'r'; //Updates all infectious to recovered, and keeps current recovered}if(today[x][y] == 's'){ // If the person is susceptible...for(int xCheck = x-1; xCheck <= x+1; xCheck++){ // Check all x coordinates around the personfor(int yCheck = y-1; yCheck <= y+1; yCheck++){ // Check all y coordinates around the personif(xCheck == x && yCheck == y){// Don't check at the person because there is no need to check there} else {if(xCheck >= 0 && yCheck >= 0 && xCheck < SIZE && yCheck < SIZE){ // Make sure the checked coordinates are in boundsif(today[xCheck][yCheck] == 'i'){ //Is the person at the checked coordinates infected?update[x][y] = 'i'; //If so, update the 's' to 'i' in the new grid}}}}}}}}for(int x = 0; x < SIZE; x++){for(int y = 0; y < SIZE; y++){today[x][y] = update[x][y]; //Updates today's grid with the new values}}}int countInfected(char arr[][SIZE], int arrSize){int count = 0;for(int x = 0; x < arrSize; x++){for(int y = 0; y < arrSize; y++){if(arr[x][y] == 'i') count++; //Increments count for each infected person in the grid}}return count;}
#include <iostream>#include <cstring>int main(int argc, char** argv){//With decimalif(strstr(argv[1], ".") != nullptr){int i = 0;//Skip i to first non 0 digitwhile(argv[1][i] < '1' || argv[1][i] > '9') ++i;//If digit comes before decimalif((argv[1] + i) < strstr(argv[1], ".")){ //Good example of pointer arithmeticstd::cout << strlen(argv[1] + i) - 1 << std::endl; //Another good example}else{//If digit is after decimalstd::cout << strlen(argv[1] + i) << std::endl;}}else{//Without decimalint m = 0;int i = 0;while(argv[1][i] < '1' || argv[1][i] > '9') ++i; //In case of some number like 0045for(; argv[1][i] != '\0'; ++i){if(argv[1][i] >= '1' && argv[1][i] <= '9') m = i + 1;}std::cout << m << std::endl;}return 0;}
#include <iostream>#include "PlaylistNode.h"using namespace std;void PrintMenu(string title);int main() {string plTitle;cout << "Enter playlist's title:" << endl;getline(cin, plTitle);PrintMenu(plTitle);return 0;}void PrintMenu(string title) {Playlist list;string id;string sname;string aname;int length;int oldPos;int newPos;char choice;while(true) {cout << endl << title << " PLAYLIST MENU" << endl;cout << "a - Add song" << endl;cout << "d - Remove song" << endl;cout << "c - Change position of song" << endl;cout << "s - Output songs by specific artist" << endl;cout << "t - Output total time of playlist (in seconds)" << endl;cout << "o - Output full playlist" << endl;cout << "q - Quit" << endl << endl;cout << "Choose an option:" << endl;cin >> choice;cin.ignore();if (choice == 'q') {exit(1);}else if (choice == 'a') {cout << "\nADD SONG" << endl;cout << "Enter song's unique ID: ";cin >> id;cin.ignore();cout << "Enter song's name: ";getline(cin,sname);cout << "Enter artist's name: ";getline(cin,aname);cout << "Enter song's length (in seconds): ";cin >> length;list.AddSong(id, sname, aname, length);}else if (choice == 'd') {cout << "\nREMOVE SONG" << endl;cout << "Enter song's unique ID: ";cin >> id;list.RemoveSong(id);}else if (choice == 'c') {cout << "\nCHANGE POSITION OF SONG" << endl;cout << "Enter song's current position: ";cin >> oldPos;cout << "Enter new position for song: ";cin >> newPos;list.ChangePosition(oldPos, newPos);}else if (choice == 's') {cout << "\nOUTPUT SONGS BY SPECIFIC ARTIST" << endl;cout << "Enter artist's name: ";getline(cin, aname);list.SongsByArtist(aname);}else if (choice == 't') {cout << "\nOUTPUT TOTAL TIME OF PLAYLIST (IN SECONDS)" << endl;cout << "Total time: " << list.TotalTime() << " seconds" << endl;}else if (choice == 'o') {cout << endl << title << " - OUTPUT FULL PLAYLIST" << endl;list.PrintList();}else {cout << "Invalid menu choice! Please try again." << endl;}}}
/*Algorithm:Step 1: Get radius of the cylinder from the user and store in variable rStep 2: Get height of the cylinder from the user and store in variable hStep 3: Multiply radius * radius * height * pi and store in vStep 4: Display the volume*/#include <iostream>using namespace std;int main(){float r; //define variable for radiusfloat h; //define variable for heightfloat v;float pi;pi=3.1416;cout<<"Enter radius:";cin>>r;cout<<"Enter height:";cin>>h;v=r*r*h*pi; //compute volumecout<<"Radius:"<<r<<"\tHeight:"<<h<<endl; //display radius and heightcout<<"\n************************\n";cout<<"Volume:"<<v<<endl;//display volumereturn 0;}
#include <iostream>using namespace std;/*Description: uses switch case statements to determine whether it is hot or not outside.Also uses toupper() function which forces user input char to be uppercase in order to work for the switch statement*/int main() {char choice;cout << "S = Summer, F = Fall, W = Winter, P = Spring" << endl;cout << "Enter a character to represent a season: ";asdasdasdasdcin >> choice;enum Season {SUMMER='S', FALL='F', WINTER='W', SPRING='P'};switch(toupper(choice)) // This switch statement compares a character entered with values stored inside of an enum{case SUMMER:cout << "It's very hot outside." << endl;break;case FALL:cout << "It's great weather outside." << endl;break;case WINTER:cout << "It's fairly cold outside." << endl;break;case SPRING:cout << "It's rather warm outside." << endl;break;default:cout << "Wrong choice" << endl;break;}return 0;}