Loading...
More Python Posts
# Given a number n, print all primes smaller than or equal to n. It is also given that n is a small number.# For example, if n is 10, the output should be “2, 3, 5, 7”. If n is 20, the output should be “2, 3, 5, 7, 11, 13, 17, 19”.# Python program to print all primes smaller than or equal to# n using Sieve of Eratosthenesdef SieveOfEratosthenes(n):# Create a boolean array "prime[0..n]" and initialize# all entries it as true. A value in prime[i] will# finally be false if i is Not a prime, else true.prime = [True for i in range(n + 1)]p = 2while (p * p <= n):# If prime[p] is not changed, then it is a primeif (prime[p] == True):# Update all multiples of pfor i in range(p * 2, n + 1, p):prime[i] = Falsep += 1prime[0]= Falseprime[1]= False# Print all prime numbersfor p in range(n + 1):if prime[p]:print (p)# driver programif __name__=='__main__':n = 30print("Following are the prime numbers smaller")print("than or equal to ", n)print("than or equal to ", n)SieveOfEratosthenes(n)
# Prompt user for a decimal numberdecimal = int(input("Enter a decimal number: "))# Convert decimal to binarybinary = bin(decimal)# Convert decimal to hexadecimalhexadecimal = hex(decimal)# Display the resultsprint("Binary:", binary)print("Hexadecimal:", hexadecimal)
#84 48 13 20 61 20 33 97 34 45 6 63 71 66 24 57 92 74 6 25 51 86 48 15 64 55 77 30 56 53 37 99 9 59 57 61 30 97 50 63 59 62 39 32 34 4 96 51 8 86 10 62 16 55 81 88 71 25 27 78 79 88 92 50 16 8 67 82 67 37 84 3 33 4 78 98 39 64 98 94 24 82 45 3 53 74 96 9 10 94 13 79 15 27 56 66 32 81 77# xor a list of integers to find the lonely integerres = a[0]for i in range(1,len(a)):res = res ^ a[i]
import copybegining = [False,False,False,False,False,None,True,True,True,True,True]#False = black True = whiteits = [0]def swap(layout, step):layoutCopy = copy.deepcopy(layout)layoutCopy[(step[0]+step[1])], layoutCopy[step[1]] = layoutCopy[step[1]], layoutCopy[(step[0]+step[1])]return layoutCopydef isSolved(layout):for i in range(len(layout)):if(layout[i] == False):return (i >= (len(layout)/2))def recurse(layout, its, steps = []):if isSolved(layout):its[0] += 1print(layout,list(x[0] for x in steps))returnstep = Nonefor i in range(len(layout)):if(layout[i] == None):if(i >= 1): #If the empty space could have something to the leftif(layout[i - 1] == False):step = [-1,i]recurse(swap(layout,step), its, (steps+[step]))if(i > 1): #If the empty space could have something 2 to the leftif(layout[i - 2] == False):step = [-2,i]recurse(swap(layout,step), its, (steps+[step]))if(i < (len(layout)-1)): #If the empty space could have something to the rightif(layout[i + 1] == True):step = [1,i]recurse(swap(layout,step), its, (steps+[step]))if(i < (len(layout)-2)): #If the empty space could have something to the rightif(layout[i + 2] == True):step = [2,i]recurse(swap(layout,step), its, (steps+[step]))its[0] += 1#return Nonerecurse(begining,its,[])print(its[0])
from time import sleepdef delay(fn, ms, *args):sleep(ms / 1000)return fn(*args)delay(lambda x: print(x), 1000, 'later') # prints 'later' after one second
def Fibonacci(n):if n<0:print("Incorrect input")# First Fibonacci number is 0elif n==1:return 0# Second Fibonacci number is 1elif n==2:return 1else:return Fibonacci(n-1)+Fibonacci(n-2)# Driver Programprint(Fibonacci(9))