## AnyTree Randomizer

0 likes • Apr 15, 2021 • 0 views
Python

## More Python Posts

#### Binary search algorithm

0 likes • Nov 19, 2022 • 0 views
Python
`""" Binary Search Algorithm ----------------------------------------"""#iterative implementation of binary search in Pythondef binary_search(a_list, item):    """Performs iterative binary search to find the position of an integer in a given, sorted, list.    a_list -- sorted list of integers    item -- integer you are searching for the position of    """    first = 0    last = len(a_list) - 1    while first <= last:        i = (first + last) / 2        if a_list[i] == item:            return ' found at position '.format(item=item, i=i)        elif a_list[i] > item:            last = i - 1        elif a_list[i] < item:            first = i + 1        else:            return ' not found in the list'.format(item=item)#recursive implementation of binary search in Pythondef binary_search_recursive(a_list, item):    """Performs recursive binary search of an integer in a given, sorted, list.    a_list -- sorted list of integers    item -- integer you are searching for the position of    """    first = 0    last = len(a_list) - 1    if len(a_list) == 0:        return ' was not found in the list'.format(item=item)    else:        i = (first + last) // 2        if item == a_list[i]:            return ' found'.format(item=item)        else:            if a_list[i] < item:                return binary_search_recursive(a_list[i+1:], item)            else:                return binary_search_recursive(a_list[:i], item)`
```# Prompt user for a decimal numberdecimal = int(input("Enter a decimal number: "))
# Convert decimal to binarybinary = bin(decimal)

#### Using logic with sets

0 likes • Nov 18, 2022 • 0 views
Python
```#SetsU = {0,1,2,3,4,5,6,7,8,9}P = {1,2,3,4}Q = {4,5,6}R = {3,4,6,8,9}
def set2bits(xs,us) :    bs=[]    for x in us :        if x in xs :            bs.append(1)        else:            bs.append(0)    assert len(us) == len(bs)    return bs
def union(set1,set2) :    finalSet = set()    bitList1 = set2bits(set1, U)    bitList2 = set2bits(set2, U)
for i in range(len(U)) :        if(bitList1[i] or bitList2[i]) :            finalSet.add(i)
return finalSet
def intersection(set1,set2) :    finalSet = set()    bitList1 = set2bits(set1, U)    bitList2 = set2bits(set2, U)
for i in range(len(U)) :        if(bitList1[i] and bitList2[i]) :            finalSet.add(i)
return finalSet
def compliment(set1) :    finalSet = set()    bitList = set2bits(set1, U)
for i in range(len(U)) :        if(not bitList[i]) :            finalSet.add(i)
return finalSet
def implication(a,b):    return union(compliment(a), b)
#################################################################################################################         Problems 1-6         ##################################################################################################################################
#p \/ (q /\ r) = (p \/ q) /\ (p \/ r)def prob1():    return union(P, intersection(Q,R)) == intersection(union(P,Q), union(P,R))
#p /\ (q \/ r) = (p /\ q) \/ (p /\ r)def prob2():    return intersection(P, union(Q,R)) == union(intersection(P,Q), intersection(P,R))
#~(p /\ q) = ~p \/ ~qdef prob3():    return compliment(intersection(P,R)) == union(compliment(P), compliment(R))
#~(p \/ q) = ~p /\ ~qdef prob4():    return compliment(union(P,Q)) == intersection(compliment(P), compliment(Q))
#(p=>q) = (~q => ~p)def prob5():    return implication(P,Q) == implication(compliment(Q), compliment(P))
#(p => q) /\ (q => r)  =>  (p => r)def prob6():    return implication(intersection(implication(P,Q), implication(Q,R)), implication(P,R))

print("Problem 1: ", prob1())print("Problem 2: ", prob2())print("Problem 3: ", prob3())print("Problem 4: ", prob4())print("Problem 5: ", prob5())print("Problem 6: ", prob6())
'''Problem 1:  TrueProblem 2:  TrueProblem 3:  TrueProblem 4:  TrueProblem 5:  TrueProblem 6:  {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}'''```

#### screencap.py

0 likes • Jan 23, 2021 • 0 views
Python
```"""Take screenshots at x interval - make a movie of doings on a computer."""
import timefrom datetime import datetime
import ffmpegimport pyautogui
while True:    epoch_time = int(time.time())    today = datetime.now().strftime("%Y_%m_%d")    filename = str(epoch_time) + ".png"
print("taking screenshot: {0}".format(filename))    myScreenshot = pyautogui.screenshot()
myScreenshot.save(today + "/" + filename)
time.sleep(5)
## and then tie it together with: https://github.com/kkroening/ffmpeg-python/blob/master/examples/README.md#assemble-video-from-sequence-of-frames#
"""import ffmpeg(    ffmpeg    .input('./2021_01_22/*.png', pattern_type='glob', framerate=25)    .filter('deflicker', mode='pm', size=10)    .filter('scale', size='hd1080', force_original_aspect_ratio='increase')    .output('movie.mp4', crf=20, preset='slower', movflags='faststart', pix_fmt='yuv420p')    .run())"""```

#### Calculate Square Root

0 likes • Nov 18, 2022 • 0 views
Python
```# Python Program to calculate the square root
num = float(input('Enter a number: '))
num_sqrt = num ** 0.5print('The square root of %0.3f is %0.3f'%(num ,num_sqrt))```

#### Lonely Integer

0 likes • Feb 26, 2023 • 0 views
Python
`#84 48 13 20 61 20 33 97 34 45 6 63 71 66 24 57 92 74 6 25 51 86 48 15 64 55 77 30 56 53 37 99 9 59 57 61 30 97 50 63 59 62 39 32 34 4 96 51 8 86 10 62 16 55 81 88 71 25 27 78 79 88 92 50 16 8 67 82 67 37 84 3 33 4 78 98 39 64 98 94 24 82 45 3 53 74 96 9 10 94 13 79 15 27 56 66 32 81 77# xor a list of integers to find the lonely integerres = a[0]    for i in range(1,len(a)):        res = res ^ a[i]`