Skip to main content

AnyTree Randomizer

Apr 15, 2021NoahEaton
Loading...

More Python Posts

my_list = [1, 2, 3, 4, 5]
removed_element = my_list.pop(2) # Remove and return element at index 2
print(removed_element) # 3
print(my_list) # [1, 2, 4, 5]
last_element = my_list.pop() # Remove and return the last element
print(last_element) # 5
print(my_list) # [1, 2, 4]

Bitwise Lambda Overflow Calculations

Aug 12, 2024AustinLeath

0 likes • 5 views

magnitude = lambda bits: 1_000_000_000_000_000_000 % (2 ** bits)
sign = lambda bits: -1 ** (1_000_000_000_000_000_000 // (2 ** bits))
print("64 bit sum:", magnitude(64) * sign(64))
print("32 bit sum:", magnitude(32) * sign(32))
print("16 bit sum:", magnitude(16) * sign(16))

Plotting Fibonacci

Nov 19, 2022CodeCatch

0 likes • 0 views

# Python program for Plotting Fibonacci
# spiral fractal using Turtle
import turtle
import math
def fiboPlot(n):
a = 0
b = 1
square_a = a
square_b = b
# Setting the colour of the plotting pen to blue
x.pencolor("blue")
# Drawing the first square
x.forward(b * factor)
x.left(90)
x.forward(b * factor)
x.left(90)
x.forward(b * factor)
x.left(90)
x.forward(b * factor)
# Proceeding in the Fibonacci Series
temp = square_b
square_b = square_b + square_a
square_a = temp
# Drawing the rest of the squares
for i in range(1, n):
x.backward(square_a * factor)
x.right(90)
x.forward(square_b * factor)
x.left(90)
x.forward(square_b * factor)
x.left(90)
x.forward(square_b * factor)
# Proceeding in the Fibonacci Series
temp = square_b
square_b = square_b + square_a
square_a = temp
# Bringing the pen to starting point of the spiral plot
x.penup()
x.setposition(factor, 0)
x.seth(0)
x.pendown()
# Setting the colour of the plotting pen to red
x.pencolor("red")
# Fibonacci Spiral Plot
x.left(90)
for i in range(n):
print(b)
fdwd = math.pi * b * factor / 2
fdwd /= 90
for j in range(90):
x.forward(fdwd)
x.left(1)
temp = a
a = b
b = temp + b
# Here 'factor' signifies the multiplicative
# factor which expands or shrinks the scale
# of the plot by a certain factor.
factor = 1
# Taking Input for the number of
# Iterations our Algorithm will run
n = int(input('Enter the number of iterations (must be > 1): '))
# Plotting the Fibonacci Spiral Fractal
# and printing the corresponding Fibonacci Number
if n > 0:
print("Fibonacci series for", n, "elements :")
x = turtle.Turtle()
x.speed(100)
fiboPlot(n)
turtle.done()
else:
print("Number of iterations must be > 0")

Nodes and Trees

Nov 18, 2022AustinLeath

0 likes • 1 view

import random
class Node:
def __init__(self, c):
self.left = None
self.right = None
self.color = c
def SetColor(self,c) :
self.color = c
def PrintNode(self) :
print(self.color)
def insert(s, root, i, n):
if i < n:
temp = Node(s[i])
root = temp
root.left = insert(s, root.left,2 * i + 1, n)
root.right = insert(s, root.right,2 * i + 2, n)
return root
def MakeTree(s) :
list = insert(s,None,0,len(s))
return list
def MakeSet() :
s = []
count = random.randint(7,12)
for _ in range(count) :
color = random.randint(0,1) == 0 and "Red" or "White"
s.append(color)
return s
def ChangeColor(root) :
if (root != None) :
if (root.color == "White") :
root.SetColor("Red")
ChangeColor(root.left)
ChangeColor(root.right)
def PrintList(root) :
if root.left != None :
PrintList(root.left)
else :
root.PrintNode()
if root.right != None :
PrintList(root.right)
else :
root.PrintNode()
t1 = MakeTree(MakeSet())
print("Original Colors For Tree 1:\n")
PrintList(t1)
ChangeColor(t1)
print("New Colors For Tree 1:\n")
PrintList(t1)
t2 = MakeTree(MakeSet())
print("Original Colors For Tree 2:\n")
PrintList(t2)
ChangeColor(t2)
print("New Colors For Tree 2:\n")
PrintList(t2)
t3 = MakeTree(MakeSet())
print("Original Colors For Tree 3:\n")
PrintList(t3)
ChangeColor(t3)
print("New Colors For Tree 3:\n")
PrintList(t3)

Reverse a linked list

Nov 19, 2022CodeCatch

0 likes • 0 views

# Python program to reverse a linked list
# Time Complexity : O(n)
# Space Complexity : O(n) as 'next'
#variable is getting created in each loop.
# Node class
class Node:
# Constructor to initialize the node object
def __init__(self, data):
self.data = data
self.next = None
class LinkedList:
# Function to initialize head
def __init__(self):
self.head = None
# Function to reverse the linked list
def reverse(self):
prev = None
current = self.head
while(current is not None):
next = current.next
current.next = prev
prev = current
current = next
self.head = prev
# Function to insert a new node at the beginning
def push(self, new_data):
new_node = Node(new_data)
new_node.next = self.head
self.head = new_node
# Utility function to print the linked LinkedList
def printList(self):
temp = self.head
while(temp):
print temp.data,
temp = temp.next
# Driver program to test above functions
llist = LinkedList()
llist.push(20)
llist.push(4)
llist.push(15)
llist.push(85)
print "Given Linked List"
llist.printList()
llist.reverse()
print "\nReversed Linked List"
llist.printList()

Topological sort

Nov 19, 2022CodeCatch

0 likes • 0 views

#Python program to print topological sorting of a DAG
from collections import defaultdict
#Class to represent a graph
class Graph:
def __init__(self,vertices):
self.graph = defaultdict(list) #dictionary containing adjacency List
self.V = vertices #No. of vertices
# function to add an edge to graph
def addEdge(self,u,v):
self.graph[u].append(v)
# A recursive function used by topologicalSort
def topologicalSortUtil(self,v,visited,stack):
# Mark the current node as visited.
visited[v] = True
# Recur for all the vertices adjacent to this vertex
for i in self.graph[v]:
if visited[i] == False:
self.topologicalSortUtil(i,visited,stack)
# Push current vertex to stack which stores result
stack.insert(0,v)
# The function to do Topological Sort. It uses recursive
# topologicalSortUtil()
def topologicalSort(self):
# Mark all the vertices as not visited
visited = [False]*self.V
stack =[]
# Call the recursive helper function to store Topological
# Sort starting from all vertices one by one
for i in range(self.V):
if visited[i] == False:
self.topologicalSortUtil(i,visited,stack)
# Print contents of stack
print(stack)
g= Graph(6)
g.addEdge(5, 2);
g.addEdge(5, 0);
g.addEdge(4, 0);
g.addEdge(4, 1);
g.addEdge(2, 3);
g.addEdge(3, 1);
print("Following is a Topological Sort of the given graph")
g.topologicalSort()