Skip to main content

find parity outliers

Nov 19, 2022CodeCatch
Loading...

More Python Posts

Differentiate Between type() and instance()

May 31, 2023CodeCatch

0 likes • 0 views

class Rectangle:
pass
class Square(Rectangle):
pass
rectangle = Rectangle()
square = Square()
print(isinstance(rectangle, Rectangle)) # True
print(isinstance(square, Rectangle)) # True
print(isinstance(square, Square)) # True
print(isinstance(rectangle, Square)) # False

Check Armstrong Number

May 31, 2023CodeCatch

0 likes • 0 views

# Function to check Armstrong number
def is_armstrong_number(number):
# Convert number to string to iterate over its digits
num_str = str(number)
# Calculate the sum of the cubes of each digit
digit_sum = sum(int(digit) ** len(num_str) for digit in num_str)
# Compare the sum with the original number
if digit_sum == number:
return True
else:
return False
# Prompt user for a number
number = int(input("Enter a number: "))
# Check if the number is an Armstrong number
if is_armstrong_number(number):
print(number, "is an Armstrong number.")
else:
print(number, "is not an Armstrong number.")

Create a Pascal’s Triangle

May 31, 2023CodeCatch

0 likes • 1 view

def generate_pascals_triangle(num_rows):
triangle = []
for row in range(num_rows):
# Initialize the row with 1
current_row = [1]
# Calculate the values for the current row
if row > 0:
previous_row = triangle[row - 1]
for i in range(len(previous_row) - 1):
current_row.append(previous_row[i] + previous_row[i + 1])
# Append 1 at the end of the row
current_row.append(1)
# Add the current row to the triangle
triangle.append(current_row)
return triangle
def display_pascals_triangle(triangle):
for row in triangle:
for number in row:
print(number, end=" ")
print()
# Prompt the user for the number of rows
num_rows = int(input("Enter the number of rows for Pascal's Triangle: "))
# Generate Pascal's Triangle
pascals_triangle = generate_pascals_triangle(num_rows)
# Display Pascal's Triangle
display_pascals_triangle(pascals_triangle)

Create a Floyd’s Triangle

May 31, 2023CodeCatch

0 likes • 0 views

def generate_floyds_triangle(num_rows):
triangle = []
number = 1
for row in range(num_rows):
current_row = []
for _ in range(row + 1):
current_row.append(number)
number += 1
triangle.append(current_row)
return triangle
def display_floyds_triangle(triangle):
for row in triangle:
for number in row:
print(number, end=" ")
print()
# Prompt the user for the number of rows
num_rows = int(input("Enter the number of rows for Floyd's Triangle: "))
# Generate Floyd's Triangle
floyds_triangle = generate_floyds_triangle(num_rows)
# Display Floyd's Triangle
display_floyds_triangle(floyds_triangle)

Topological sort

Nov 19, 2022CodeCatch

0 likes • 3 views

#Python program to print topological sorting of a DAG
from collections import defaultdict
#Class to represent a graph
class Graph:
def __init__(self,vertices):
self.graph = defaultdict(list) #dictionary containing adjacency List
self.V = vertices #No. of vertices
# function to add an edge to graph
def addEdge(self,u,v):
self.graph[u].append(v)
# A recursive function used by topologicalSort
def topologicalSortUtil(self,v,visited,stack):
# Mark the current node as visited.
visited[v] = True
# Recur for all the vertices adjacent to this vertex
for i in self.graph[v]:
if visited[i] == False:
self.topologicalSortUtil(i,visited,stack)
# Push current vertex to stack which stores result
stack.insert(0,v)
# The function to do Topological Sort. It uses recursive
# topologicalSortUtil()
def topologicalSort(self):
# Mark all the vertices as not visited
visited = [False]*self.V
stack =[]
# Call the recursive helper function to store Topological
# Sort starting from all vertices one by one
for i in range(self.V):
if visited[i] == False:
self.topologicalSortUtil(i,visited,stack)
# Print contents of stack
print(stack)
g= Graph(6)
g.addEdge(5, 2);
g.addEdge(5, 0);
g.addEdge(4, 0);
g.addEdge(4, 1);
g.addEdge(2, 3);
g.addEdge(3, 1);
print("Following is a Topological Sort of the given graph")
g.topologicalSort()

integer to roman numeral

Nov 19, 2022CodeCatch

0 likes • 1 view

def to_roman_numeral(num):
lookup = [
(1000, 'M'),
(900, 'CM'),
(500, 'D'),
(400, 'CD'),
(100, 'C'),
(90, 'XC'),
(50, 'L'),
(40, 'XL'),
(10, 'X'),
(9, 'IX'),
(5, 'V'),
(4, 'IV'),
(1, 'I'),
]
res = ''
for (n, roman) in lookup:
(d, num) = divmod(num, n)
res += roman * d
return res
to_roman_numeral(3) # 'III'
to_roman_numeral(11) # 'XI'
to_roman_numeral(1998) # 'MCMXCVIII'