Skip to main content

Get Coefficient

Nov 18, 2022AustinLeath
Loading...

More C++ Posts

Audio Frequency Amplitudes

Aug 27, 2021LeifMessinger

0 likes • 1 view

//From https://create.arduino.cc/projecthub/abhilashpatel121/easyfft-fast-fourier-transform-fft-for-arduino-9d2677
#include <cmath>
#include <iostream>
const unsigned char sine_data[] = { //Quarter a sine wave
0,
4, 9, 13, 18, 22, 27, 31, 35, 40, 44,
49, 53, 57, 62, 66, 70, 75, 79, 83, 87,
91, 96, 100, 104, 108, 112, 116, 120, 124, 127,
131, 135, 139, 143, 146, 150, 153, 157, 160, 164,
167, 171, 174, 177, 180, 183, 186, 189, 192, 195, //Paste this at top of program
198, 201, 204, 206, 209, 211, 214, 216, 219, 221,
223, 225, 227, 229, 231, 233, 235, 236, 238, 240,
241, 243, 244, 245, 246, 247, 248, 249, 250, 251,
252, 253, 253, 254, 254, 254, 255, 255, 255, 255
};
float sine(int i){ //Inefficient sine
int j=i;
float out;
while(j < 0) j = j + 360;
while(j > 360) j = j - 360;
if(j > -1 && j < 91) out = sine_data[j];
else if(j > 90 && j < 181) out = sine_data[180 - j];
else if(j > 180 && j < 271) out = -sine_data[j - 180];
else if(j > 270 && j < 361) out = -sine_data[360 - j];
return (out / 255);
}
float cosine(int i){ //Inefficient cosine
int j = i;
float out;
while(j < 0) j = j + 360;
while(j > 360) j = j - 360;
if(j > -1 && j < 91) out = sine_data[90 - j];
else if(j > 90 && j < 181) out = -sine_data[j - 90];
else if(j > 180 && j < 271) out = -sine_data[270 - j];
else if(j > 270 && j < 361) out = sine_data[j - 270];
return (out / 255);
}
//Example data:
//-----------------------------FFT Function----------------------------------------------//
float* FFT(int in[],unsigned int N,float Frequency){ //Result is highest frequencies in order of loudness. Needs to be deleted.
/*
Code to perform FFT on arduino,
setup:
paste sine_data [91] at top of program [global variable], paste FFT function at end of program
Term:
1. in[] : Data array,
2. N : Number of sample (recommended sample size 2,4,8,16,32,64,128...)
3. Frequency: sampling frequency required as input (Hz)
If sample size is not in power of 2 it will be clipped to lower side of number.
i.e, for 150 number of samples, code will consider first 128 sample, remaining sample will be omitted.
For Arduino nano, FFT of more than 128 sample not possible due to mamory limitation (64 recomended)
For higher Number of sample may arise Mamory related issue,
Code by ABHILASH
Documentation:https://www.instructables.com/member/abhilash_patel/instructables/
2/3/2021: change data type of N from float to int for >=256 samples
*/
unsigned int sampleRates[13]={1,2,4,8,16,32,64,128,256,512,1024,2048};
int a = N;
int o;
for(int i=0;i<12;i++){ //Snapping N to a sample rate in sampleRates
if(sampleRates[i]<=a){
o = i;
}
}
int in_ps[sampleRates[o]] = {}; //input for sequencing
float out_r[sampleRates[o]] = {}; //real part of transform
float out_im[sampleRates[o]] = {}; //imaginory part of transform
int x = 0;
int c1;
int f;
for(int b=0;b<o;b++){ // bit reversal
c1 = sampleRates[b];
f = sampleRates[o] / (c1 + c1);
for(int j = 0;j < c1;j++){
x = x + 1;
in_ps[x]=in_ps[j]+f;
}
}
for(int i=0;i<sampleRates[o];i++){ // update input array as per bit reverse order
if(in_ps[i]<a){
out_r[i]=in[in_ps[i]];
}
if(in_ps[i]>a){
out_r[i]=in[in_ps[i]-a];
}
}
int i10,i11,n1;
float e,c,s,tr,ti;
for(int i=0;i<o;i++){ //fft
i10 = sampleRates[i]; // overall values of sine/cosine :
i11 = sampleRates[o] / sampleRates[i+1]; // loop with similar sine cosine:
e = 360 / sampleRates[i+1];
e = 0 - e;
n1 = 0;
for(int j=0;j<i10;j++){
c=cosine(e*j);
s=sine(e*j);
n1=j;
for(int k=0;k<i11;k++){
tr = c*out_r[i10 + n1]-s*out_im[i10 + n1];
ti = s*out_r[i10 + n1]+c*out_im[i10 + n1];
out_r[n1 + i10] = out_r[n1]-tr;
out_r[n1] = out_r[n1]+tr;
out_im[n1 + i10] = out_im[n1]-ti;
out_im[n1] = out_im[n1]+ti;
n1 = n1+i10+i10;
}
}
}
/*
for(int i=0;i<sampleRates[o];i++)
{
std::cout << (out_r[i]);
std::cout << ("\t"); // un comment to print RAW o/p
std::cout << (out_im[i]); std::cout << ("i");
std::cout << std::endl;
}
*/
//---> here onward out_r contains amplitude and our_in conntains frequency (Hz)
for(int i=0;i<sampleRates[o-1];i++){ // getting amplitude from compex number
out_r[i] = sqrt(out_r[i]*out_r[i]+out_im[i]*out_im[i]); // to increase the speed delete sqrt
out_im[i] = i * Frequency / N;
std::cout << (out_im[i]); std::cout << ("Hz");
std::cout << ("\t"); // un comment to print freuency bin
std::cout << (out_r[i]);
std::cout << std::endl;
}
x = 0; // peak detection
for(int i=1;i<sampleRates[o-1]-1;i++){
if(out_r[i]>out_r[i-1] && out_r[i]>out_r[i+1]){
in_ps[x] = i; //in_ps array used for storage of peak number
x = x + 1;
}
}
s = 0;
c = 0;
for(int i=0;i<x;i++){ // re arraange as per magnitude
for(int j=c;j<x;j++){
if(out_r[in_ps[i]]<out_r[in_ps[j]]){
s=in_ps[i];
in_ps[i]=in_ps[j];
in_ps[j]=s;
}
}
c=c+1;
}
float* f_peaks = new float[sampleRates[o]];
for(int i=0;i<5;i++){ // updating f_peak array (global variable)with descending order
f_peaks[i]=out_im[in_ps[i]];
}
return f_peaks;
}
//------------------------------------------------------------------------------------//
//main.cpp
int data[64]={
14, 30, 35, 34, 34, 40, 46, 45, 30, 4, -26, -48, -55, -49, -37,
-28, -24, -22, -13, 6, 32, 55, 65, 57, 38, 17, 1, -6, -11, -19, -34,
-51, -61, -56, -35, -7, 18, 32, 35, 34, 35, 41, 46, 43, 26, -2, -31, -50,
-55, -47, -35, -27, -24, -21, -10, 11, 37, 58, 64, 55, 34, 13, -1, -7
};
int main(){
const unsigned int SAMPLE_RATE = 48*1000; //48khz
auto result = FFT(data,64,SAMPLE_RATE);
std::cout << result[0] << " " << result[1] << " " << result[2] << " " << result[3] << std::endl;
delete[] result;
return 0;
}

Stock Options Analyzer

Nov 18, 2022AustinLeath

0 likes • 0 views

#include <iostream>
#include <cmath>
#include <string.h>
using namespace std;
int main() {
string tickerName;
int numOfContracts;
float currentOptionValue;
cout << "Enter a stock ticker: ";
getline(cin, tickerName);
cout << "Enter the current number of " << tickerName << " contracts you are holding: ";
cin >> numOfContracts;
cout << "Enter the current price of the option: ";
cin >> currentOptionValue;
cout << "The value of your " << tickerName << " options are: $" << (currentOptionValue * 100.00) * (numOfContracts);
cout << endl;
return 0;
}

GCD using Stein's Algorithm

Jun 30, 2023Iceman_71

1 like • 7 views

// Iterative C++ program to
// implement Stein's Algorithm
//#include <bits/stdc++.h>
#include <bitset>
using namespace std;
// Function to implement
// Stein's Algorithm
int gcd(int a, int b)
{
/* GCD(0, b) == b; GCD(a, 0) == a,
GCD(0, 0) == 0 */
if (a == 0)
return b;
if (b == 0)
return a;
/*Finding K, where K is the
greatest power of 2
that divides both a and b. */
int k;
for (k = 0; ((a | b) & 1) == 0; ++k)
{
a >>= 1;
b >>= 1;
}
/* Dividing a by 2 until a becomes odd */
while ((a & 1) == 0)
a >>= 1;
/* From here on, 'a' is always odd. */
do
{
/* If b is even, remove all factor of 2 in b */
while ((b & 1) == 0)
b >>= 1;
/* Now a and b are both odd.
Swap if necessary so a <= b,
then set b = b - a (which is even).*/
if (a > b)
swap(a, b); // Swap u and v.
b = (b - a);
} while (b != 0);
/* restore common factors of 2 */
return a << k;
}
// Driver code
int main()
{
int a = 12, b = 780;
printf("Gcd of given numbers is %d\n", gcd(a, b));
return 0;
}

Command line game

Nov 19, 2022CodeCatch

0 likes • 1 view

#include <iostream>
#include <vector>
#include <utility>
#include <algorithm>
#include <chrono>
using namespace std;
#include <stdio.h>
#include <Windows.h>
int nScreenWidth = 120; // Console Screen Size X (columns)
int nScreenHeight = 40; // Console Screen Size Y (rows)
int nMapWidth = 16; // World Dimensions
int nMapHeight = 16;
float fPlayerX = 14.7f; // Player Start Position
float fPlayerY = 5.09f;
float fPlayerA = 0.0f; // Player Start Rotation
float fFOV = 3.14159f / 4.0f; // Field of View
float fDepth = 16.0f; // Maximum rendering distance
float fSpeed = 5.0f; // Walking Speed
int main()
{
// Create Screen Buffer
wchar_t *screen = new wchar_t[nScreenWidth*nScreenHeight];
HANDLE hConsole = CreateConsoleScreenBuffer(GENERIC_READ | GENERIC_WRITE, 0, NULL, CONSOLE_TEXTMODE_BUFFER, NULL);
SetConsoleActiveScreenBuffer(hConsole);
DWORD dwBytesWritten = 0;
// Create Map of world space # = wall block, . = space
wstring map;
map += L"#########.......";
map += L"#...............";
map += L"#.......########";
map += L"#..............#";
map += L"#......##......#";
map += L"#......##......#";
map += L"#..............#";
map += L"###............#";
map += L"##.............#";
map += L"#......####..###";
map += L"#......#.......#";
map += L"#......#.......#";
map += L"#..............#";
map += L"#......#########";
map += L"#..............#";
map += L"################";
auto tp1 = chrono::system_clock::now();
auto tp2 = chrono::system_clock::now();
while (1)
{
// We'll need time differential per frame to calculate modification
// to movement speeds, to ensure consistant movement, as ray-tracing
// is non-deterministic
tp2 = chrono::system_clock::now();
chrono::duration<float> elapsedTime = tp2 - tp1;
tp1 = tp2;
float fElapsedTime = elapsedTime.count();
// Handle CCW Rotation
if (GetAsyncKeyState((unsigned short)'A') & 0x8000)
fPlayerA -= (fSpeed * 0.75f) * fElapsedTime;
// Handle CW Rotation
if (GetAsyncKeyState((unsigned short)'D') & 0x8000)
fPlayerA += (fSpeed * 0.75f) * fElapsedTime;
// Handle Forwards movement & collision
if (GetAsyncKeyState((unsigned short)'W') & 0x8000)
{
fPlayerX += sinf(fPlayerA) * fSpeed * fElapsedTime;;
fPlayerY += cosf(fPlayerA) * fSpeed * fElapsedTime;;
if (map.c_str()[(int)fPlayerX * nMapWidth + (int)fPlayerY] == '#')
{
fPlayerX -= sinf(fPlayerA) * fSpeed * fElapsedTime;;
fPlayerY -= cosf(fPlayerA) * fSpeed * fElapsedTime;;
}
}
// Handle backwards movement & collision
if (GetAsyncKeyState((unsigned short)'S') & 0x8000)
{
fPlayerX -= sinf(fPlayerA) * fSpeed * fElapsedTime;;
fPlayerY -= cosf(fPlayerA) * fSpeed * fElapsedTime;;
if (map.c_str()[(int)fPlayerX * nMapWidth + (int)fPlayerY] == '#')
{
fPlayerX += sinf(fPlayerA) * fSpeed * fElapsedTime;;
fPlayerY += cosf(fPlayerA) * fSpeed * fElapsedTime;;
}
}
for (int x = 0; x < nScreenWidth; x++)
{
// For each column, calculate the projected ray angle into world space
float fRayAngle = (fPlayerA - fFOV/2.0f) + ((float)x / (float)nScreenWidth) * fFOV;
// Find distance to wall
float fStepSize = 0.1f; // Increment size for ray casting, decrease to increase
float fDistanceToWall = 0.0f; // resolution
bool bHitWall = false; // Set when ray hits wall block
bool bBoundary = false; // Set when ray hits boundary between two wall blocks
float fEyeX = sinf(fRayAngle); // Unit vector for ray in player space
float fEyeY = cosf(fRayAngle);
// Incrementally cast ray from player, along ray angle, testing for
// intersection with a block
while (!bHitWall && fDistanceToWall < fDepth)
{
fDistanceToWall += fStepSize;
int nTestX = (int)(fPlayerX + fEyeX * fDistanceToWall);
int nTestY = (int)(fPlayerY + fEyeY * fDistanceToWall);
// Test if ray is out of bounds
if (nTestX < 0 || nTestX >= nMapWidth || nTestY < 0 || nTestY >= nMapHeight)
{
bHitWall = true; // Just set distance to maximum depth
fDistanceToWall = fDepth;
}
else
{
// Ray is inbounds so test to see if the ray cell is a wall block
if (map.c_str()[nTestX * nMapWidth + nTestY] == '#')
{
// Ray has hit wall
bHitWall = true;
// To highlight tile boundaries, cast a ray from each corner
// of the tile, to the player. The more coincident this ray
// is to the rendering ray, the closer we are to a tile
// boundary, which we'll shade to add detail to the walls
vector<pair<float, float>> p;
// Test each corner of hit tile, storing the distance from
// the player, and the calculated dot product of the two rays
for (int tx = 0; tx < 2; tx++)
for (int ty = 0; ty < 2; ty++)
{
// Angle of corner to eye
float vy = (float)nTestY + ty - fPlayerY;
float vx = (float)nTestX + tx - fPlayerX;
float d = sqrt(vx*vx + vy*vy);
float dot = (fEyeX * vx / d) + (fEyeY * vy / d);
p.push_back(make_pair(d, dot));
}
// Sort Pairs from closest to farthest
sort(p.begin(), p.end(), [](const pair<float, float> &left, const pair<float, float> &right) {return left.first < right.first; });
// First two/three are closest (we will never see all four)
float fBound = 0.01;
if (acos(p.at(0).second) < fBound) bBoundary = true;
if (acos(p.at(1).second) < fBound) bBoundary = true;
if (acos(p.at(2).second) < fBound) bBoundary = true;
}
}
}
// Calculate distance to ceiling and floor
int nCeiling = (float)(nScreenHeight/2.0) - nScreenHeight / ((float)fDistanceToWall);
int nFloor = nScreenHeight - nCeiling;
// Shader walls based on distance
short nShade = ' ';
if (fDistanceToWall <= fDepth / 4.0f) nShade = 0x2588; // Very close
else if (fDistanceToWall < fDepth / 3.0f) nShade = 0x2593;
else if (fDistanceToWall < fDepth / 2.0f) nShade = 0x2592;
else if (fDistanceToWall < fDepth) nShade = 0x2591;
else nShade = ' '; // Too far away
if (bBoundary) nShade = ' '; // Black it out
for (int y = 0; y < nScreenHeight; y++)
{
// Each Row
if(y <= nCeiling)
screen[y*nScreenWidth + x] = ' ';
else if(y > nCeiling && y <= nFloor)
screen[y*nScreenWidth + x] = nShade;
else // Floor
{
// Shade floor based on distance
float b = 1.0f - (((float)y -nScreenHeight/2.0f) / ((float)nScreenHeight / 2.0f));
if (b < 0.25) nShade = '#';
else if (b < 0.5) nShade = 'x';
else if (b < 0.75) nShade = '.';
else if (b < 0.9) nShade = '-';
else nShade = ' ';
screen[y*nScreenWidth + x] = nShade;
}
}
}
// Display Stats
swprintf_s(screen, 40, L"X=%3.2f, Y=%3.2f, A=%3.2f FPS=%3.2f ", fPlayerX, fPlayerY, fPlayerA, 1.0f/fElapsedTime);
// Display Map
for (int nx = 0; nx < nMapWidth; nx++)
for (int ny = 0; ny < nMapWidth; ny++)
{
screen[(ny+1)*nScreenWidth + nx] = map[ny * nMapWidth + nx];
}
screen[((int)fPlayerX+1) * nScreenWidth + (int)fPlayerY] = 'P';
// Display Frame
screen[nScreenWidth * nScreenHeight - 1] = '\0';
WriteConsoleOutputCharacter(hConsole, screen, nScreenWidth * nScreenHeight, { 0,0 }, &dwBytesWritten);
}
return 0;
}

Infection Simulation

Nov 18, 2022AustinLeath

0 likes • 2 views

/*
this program will simulate the spreading of a disease through a
grid of people, starting from a user-defined person. It will count
the number of turns taken before everyone on the grid is immunized
to the disease after having caught it once.
This program will user the SIR model (Susceptible, Infectious, Recovered)
and cellular automata to simulate the people in the grid.
*/
#include <iostream>
using namespace std;
/* Any and all global variables */
const int SIZE = 8; //Size of the square person array
/* Any and all functions */
void gridDefaultify(char[][SIZE], int);
//Purpose: Sets each item in the person array to 's'
//Parameters: A square, two-dimensional array
// The size of that array's bounds
void gridDisplay(char[][SIZE], int);
//Purpose: Formats and prints the information in the person grid
//Parameters: A square, two-dimensional array
// The value of the current day
void nextTurn(char[][SIZE], char[][SIZE], int&);
//Purpose: Updates the grid of people, and the current day
//Parameters: Two square, two-dimensional arrays
// A reference to the current day (so that it can be updated)
int countInfected(char[][SIZE], int);
//Purpose: Counts the number of infectious people on the grid
//Parameters: A square, two-dimensional array
// The size of that array's bounds
int main(){
int currentDay = 0; //Infection begins on day 0, and ends one day after the last person is Recovered
char gridCurrent[SIZE][SIZE]; //Grid of all people
char gridUpdate[SIZE][SIZE]; //Where the user chooses to start the infection
int xToInfect;
int yToInfect; //Set of coordinates for the initial infection position, given by user
//Initializes the grids to all 's'
gridDefaultify(gridCurrent, SIZE);
gridDefaultify(gridUpdate, SIZE);
//The below block gets the initial infection coordinates from the user
cout << "Please enter a location to infect: ";
while(true){
cin >> xToInfect >> yToInfect;
xToInfect--;
yToInfect--;
if(xToInfect < 0 || yToInfect < 0 || xToInfect >= SIZE || yToInfect >= SIZE){
cout << "Those coordinates are outside the bounds of this region." << endl;
cout << "Please enter another location to infect: ";
continue;
} else {
gridCurrent[xToInfect][yToInfect] = 'i';
break;
}
}
//Displays the initial state of the grid
gridDisplay(gridCurrent, currentDay);
//The below block will display and update the grid until the infection is done.
while(true){
nextTurn(gridCurrent, gridUpdate, currentDay);
gridDisplay(gridCurrent, currentDay);
if(countInfected(gridCurrent, SIZE) == 0) break; //Once there are no more infected, the game is done
}
//Displays the number of days taken for the infection to end
cout << "It took " << currentDay + 1 << " days for the outbreak to end";
cout << endl;
return 0;
}
void gridDefaultify(char arr[][SIZE], int arrSize){
for(int x = 0; x < arrSize; x++){
for(int y = 0; y < arrSize; y++){
arr[x][y] = 's'; //Sets all items in the passed-in array to 's'
}
}
return;
}
void gridDisplay(char arr[][SIZE], int day){
cout << "Day " << day << endl; //Prints the current day
for(int x = 0; x < SIZE; x++){
for(int y = 0; y < SIZE; y++){
cout << arr[x][y] <<" "; //Prints the array's contents
}
cout << endl; //Formats with newlines
}
cout << endl; //Some spacing
return;
}
void nextTurn(char today[][SIZE], char update[][SIZE], int& day){
day++; //Updates the day
int xCheck; //X coordinate to be checked
int yCheck; //Y coordinate to be checked
for(int x = 0; x < SIZE; x++){
for(int y = 0; y < SIZE; y++){
//Sets all 'i' to 'r' in the new grid
if(today[x][y] == 'i' || today[x][y] == 'r'){
update[x][y] = 'r'; //Updates all infectious to recovered, and keeps current recovered
}
if(today[x][y] == 's'){ // If the person is susceptible...
for(int xCheck = x-1; xCheck <= x+1; xCheck++){ // Check all x coordinates around the person
for(int yCheck = y-1; yCheck <= y+1; yCheck++){ // Check all y coordinates around the person
if(xCheck == x && yCheck == y){
// Don't check at the person because there is no need to check there
} else {
if(xCheck >= 0 && yCheck >= 0 && xCheck < SIZE && yCheck < SIZE){ // Make sure the checked coordinates are in bounds
if(today[xCheck][yCheck] == 'i'){ //Is the person at the checked coordinates infected?
update[x][y] = 'i'; //If so, update the 's' to 'i' in the new grid
}
}
}
}
}
}
}
}
for(int x = 0; x < SIZE; x++){
for(int y = 0; y < SIZE; y++){
today[x][y] = update[x][y]; //Updates today's grid with the new values
}
}
}
int countInfected(char arr[][SIZE], int arrSize){
int count = 0;
for(int x = 0; x < arrSize; x++){
for(int y = 0; y < arrSize; y++){
if(arr[x][y] == 'i') count++; //Increments count for each infected person in the grid
}
}
return count;
}

Hash Table Example

Nov 18, 2022AustinLeath

0 likes • 0 views

using namespace std;
class Hash
{
int BUCKET; // No. of buckets
// Pointer to an array containing buckets
list<int> *table;
public:
Hash(int V); // Constructor
// inserts a key into hash table
void insertItem(int x);
// deletes a key from hash table
void deleteItem(int key);
// hash function to map values to key
int hashFunction(int x) {
return (x % BUCKET);
}
void displayHash();
};
Hash::Hash(int b)
{
this->BUCKET = b;
table = new list<int>[BUCKET];
}
void Hash::insertItem(int key)
{
int index = hashFunction(key);
table[index].push_back(key);
}
void Hash::deleteItem(int key)
{
// get the hash index of key
int index = hashFunction(key);
// find the key in (inex)th list
list <int> :: iterator i;
for (i = table[index].begin();
i != table[index].end(); i++) {
if (*i == key)
break;
}
// if key is found in hash table, remove it
if (i != table[index].end())
table[index].erase(i);
}
// function to display hash table
void Hash::displayHash() {
for (int i = 0; i < BUCKET; i++) {
cout << i;
for (auto x : table[i])
cout << " --> " << x;
cout << endl;
}
}
// Driver program
int main()
{
// array that contains keys to be mapped
int a[] = {15, 11, 27, 8, 12};
int n = sizeof(a)/sizeof(a[0]);
// insert the keys into the hash table
Hash h(7); // 7 is count of buckets in
// hash table
for (int i = 0; i < n; i++)
h.insertItem(a[i]);
// delete 12 from hash table
h.deleteItem(12);
// display the Hash table
h.displayHash();
return 0;
}