Skip to main content

UNT CSCE 1040 Goat Program

0 likes • Nov 18, 2022 • 1 view
C++
Loading...

More C++ Posts

Hello World!

0 likes • Aug 31, 2020 • 2 views
C++
#include <iostream>
using namespace std;
int main() {
cout << "Hello World!\n";
// Prints out "Hello World"
return 0;
}

2D Array Chessboard Pattern

0 likes • Nov 18, 2022 • 14 views
C++
#include<iostream>
using namespace std;
const int rows = 8;
const int cols = 8;
char chessboard[rows][cols];
void setBoard(char chessboard[][cols]);
void printBoard(char chessboard[][cols]);
void setBoard(char chessboard[][cols]) {
for(int i = 0; i < rows; i++) {
for(int j = 0; j < cols; j++) {
if(i % 2 == 0 && j % 2 == 0) {
chessboard[i][j] = 'x';
} else {
if(i % 2 != 0 && j % 2 == 1) {
chessboard[i][j] = 'x';
} else {
chessboard[i][j] = '-';
}
}
}
}
return;
}
void printBoard(char chessboard[][cols]) {
for(int i = 0; i < rows; i++) {
for(int j = 0; j < cols; j++) {
cout << chessboard[i][j] << " ";
}
cout << endl;
}
return;
}
int main(int argc, char const *argv[])
{
setBoard(chessboard);
printBoard(chessboard);
return 0;
}

SAM 5 words with bitmaps

0 likes • Oct 23, 2022 • 1 view
C++
//Leif Messinger
//Finds all sets of 5 5 letter words that don't have duplicate letters in either themselves or each other.
//First it reads the words in and puts them in groups of their bitmasks
//After that, we recurse on each group. Before doing that, we remove the group from the set of other groups to check it against.
#include <cstdio> //getchar, printf
#include <cassert> //assert
#include <vector>
#include <set>
#include <algorithm> //std::copy_if
#include <iterator> //std::back_inserter
#define CHECK_FOR_CRLF true
#define MIN_WORDS 5
#define MAX_WORDS 5
#define WORD_TOO_LONG(len) (len != 5)
const unsigned int charToBitmask(const char bruh){
assert(bruh >= 'a' && bruh <= 'z');
return (1 << (bruh - 'a'));
}
void printBitmask(unsigned int bitmask){
char start = 'a';
while(bitmask != 0){
if(bitmask & 1){
putchar(start);
}
bitmask >>= 1;
++start;
}
}
//Pointer needs to be deleted
const std::set<unsigned int>* getBitmasks(){
std::set<unsigned int>* bitmasksPointer = new std::set<unsigned int>;
std::set<unsigned int>& bitmasks = (*bitmasksPointer);
unsigned int bitmask = 0;
unsigned int wordLength = 0;
bool duplicateLetters = false;
for(char c = getchar(); c >= 0; c = getchar()){
if(CHECK_FOR_CRLF && c == '\r'){
continue;
}
if(c == '\n'){
if(!(WORD_TOO_LONG(wordLength) || duplicateLetters)) bitmasks.insert(bitmask);
bitmask = 0;
wordLength = 0;
duplicateLetters = false;
continue;
}
if((bitmask & charToBitmask(c)) != 0) duplicateLetters = true;
bitmask |= charToBitmask(c);
++wordLength;
}
return bitmasksPointer;
}
void printBitmasks(const std::vector<unsigned int>& bitmasks){
for(unsigned int bruh : bitmasks){
printBitmask(bruh);
putchar(','); putchar(' ');
}
puts("");
}
//Just to be clear, when I mean "word", I mean a group of words with the same letters.
void recurse(std::vector<unsigned int>& oldBitmasks, std::vector<unsigned int> history, const unsigned int currentBitmask){
//If there's not enough words left
if(oldBitmasks.size() + (-(history.size())) + (-MIN_WORDS) <= 0){
//If there's enough words
if(history.size() >= MIN_WORDS){
//Print the list
printBitmasks(history);
}
return;
//To make it faster, we can stop it after 5 words too
}else if(history.size() >= MAX_WORDS){
//Print the list
printBitmasks(history);
return;
}
//Thin out the array with only stuff that matches the currentBitmask.
std::vector<unsigned int> newBitmasks;
std::copy_if(oldBitmasks.begin(), oldBitmasks.end(), std::back_inserter(newBitmasks), [&currentBitmask](unsigned int bruh){
return (bruh & currentBitmask) == 0;
});
while(newBitmasks.size() > 0){
//I know this modifies 'oldBitmasks' too. It's intentional.
//This makes it so that the word is never involved in any of the child serches or any of the later searches in this while loop.
const unsigned int word = newBitmasks.back(); newBitmasks.pop_back();
std::vector<unsigned int> newHistory = history;
newHistory.push_back(word);
recurse(newBitmasks, newHistory, currentBitmask | word);
}
}
int main(){
const std::set<unsigned int>* bitmasksSet = getBitmasks();
std::vector<unsigned int> bitmasks(bitmasksSet->begin(), bitmasksSet->end());
delete bitmasksSet;
recurse(bitmasks, std::vector<unsigned int>(), 0);
return 0;
}

Audio Frequency Amplitudes

0 likes • Aug 27, 2021 • 1 view
C++
//From https://create.arduino.cc/projecthub/abhilashpatel121/easyfft-fast-fourier-transform-fft-for-arduino-9d2677
#include <cmath>
#include <iostream>
const unsigned char sine_data[] = { //Quarter a sine wave
0,
4, 9, 13, 18, 22, 27, 31, 35, 40, 44,
49, 53, 57, 62, 66, 70, 75, 79, 83, 87,
91, 96, 100, 104, 108, 112, 116, 120, 124, 127,
131, 135, 139, 143, 146, 150, 153, 157, 160, 164,
167, 171, 174, 177, 180, 183, 186, 189, 192, 195, //Paste this at top of program
198, 201, 204, 206, 209, 211, 214, 216, 219, 221,
223, 225, 227, 229, 231, 233, 235, 236, 238, 240,
241, 243, 244, 245, 246, 247, 248, 249, 250, 251,
252, 253, 253, 254, 254, 254, 255, 255, 255, 255
};
float sine(int i){ //Inefficient sine
int j=i;
float out;
while(j < 0) j = j + 360;
while(j > 360) j = j - 360;
if(j > -1 && j < 91) out = sine_data[j];
else if(j > 90 && j < 181) out = sine_data[180 - j];
else if(j > 180 && j < 271) out = -sine_data[j - 180];
else if(j > 270 && j < 361) out = -sine_data[360 - j];
return (out / 255);
}
float cosine(int i){ //Inefficient cosine
int j = i;
float out;
while(j < 0) j = j + 360;
while(j > 360) j = j - 360;
if(j > -1 && j < 91) out = sine_data[90 - j];
else if(j > 90 && j < 181) out = -sine_data[j - 90];
else if(j > 180 && j < 271) out = -sine_data[270 - j];
else if(j > 270 && j < 361) out = sine_data[j - 270];
return (out / 255);
}
//Example data:
//-----------------------------FFT Function----------------------------------------------//
float* FFT(int in[],unsigned int N,float Frequency){ //Result is highest frequencies in order of loudness. Needs to be deleted.
/*
Code to perform FFT on arduino,
setup:
paste sine_data [91] at top of program [global variable], paste FFT function at end of program
Term:
1. in[] : Data array,
2. N : Number of sample (recommended sample size 2,4,8,16,32,64,128...)
3. Frequency: sampling frequency required as input (Hz)
If sample size is not in power of 2 it will be clipped to lower side of number.
i.e, for 150 number of samples, code will consider first 128 sample, remaining sample will be omitted.
For Arduino nano, FFT of more than 128 sample not possible due to mamory limitation (64 recomended)
For higher Number of sample may arise Mamory related issue,
Code by ABHILASH
Documentation:https://www.instructables.com/member/abhilash_patel/instructables/
2/3/2021: change data type of N from float to int for >=256 samples
*/
unsigned int sampleRates[13]={1,2,4,8,16,32,64,128,256,512,1024,2048};
int a = N;
int o;
for(int i=0;i<12;i++){ //Snapping N to a sample rate in sampleRates
if(sampleRates[i]<=a){
o = i;
}
}
int in_ps[sampleRates[o]] = {}; //input for sequencing
float out_r[sampleRates[o]] = {}; //real part of transform
float out_im[sampleRates[o]] = {}; //imaginory part of transform
int x = 0;
int c1;
int f;
for(int b=0;b<o;b++){ // bit reversal
c1 = sampleRates[b];
f = sampleRates[o] / (c1 + c1);
for(int j = 0;j < c1;j++){
x = x + 1;
in_ps[x]=in_ps[j]+f;
}
}
for(int i=0;i<sampleRates[o];i++){ // update input array as per bit reverse order
if(in_ps[i]<a){
out_r[i]=in[in_ps[i]];
}
if(in_ps[i]>a){
out_r[i]=in[in_ps[i]-a];
}
}
int i10,i11,n1;
float e,c,s,tr,ti;
for(int i=0;i<o;i++){ //fft
i10 = sampleRates[i]; // overall values of sine/cosine :
i11 = sampleRates[o] / sampleRates[i+1]; // loop with similar sine cosine:
e = 360 / sampleRates[i+1];
e = 0 - e;
n1 = 0;
for(int j=0;j<i10;j++){
c=cosine(e*j);
s=sine(e*j);
n1=j;
for(int k=0;k<i11;k++){
tr = c*out_r[i10 + n1]-s*out_im[i10 + n1];
ti = s*out_r[i10 + n1]+c*out_im[i10 + n1];
out_r[n1 + i10] = out_r[n1]-tr;
out_r[n1] = out_r[n1]+tr;
out_im[n1 + i10] = out_im[n1]-ti;
out_im[n1] = out_im[n1]+ti;
n1 = n1+i10+i10;
}
}
}
/*
for(int i=0;i<sampleRates[o];i++)
{
std::cout << (out_r[i]);
std::cout << ("\t"); // un comment to print RAW o/p
std::cout << (out_im[i]); std::cout << ("i");
std::cout << std::endl;
}
*/
//---> here onward out_r contains amplitude and our_in conntains frequency (Hz)
for(int i=0;i<sampleRates[o-1];i++){ // getting amplitude from compex number
out_r[i] = sqrt(out_r[i]*out_r[i]+out_im[i]*out_im[i]); // to increase the speed delete sqrt
out_im[i] = i * Frequency / N;
std::cout << (out_im[i]); std::cout << ("Hz");
std::cout << ("\t"); // un comment to print freuency bin
std::cout << (out_r[i]);
std::cout << std::endl;
}
x = 0; // peak detection
for(int i=1;i<sampleRates[o-1]-1;i++){
if(out_r[i]>out_r[i-1] && out_r[i]>out_r[i+1]){
in_ps[x] = i; //in_ps array used for storage of peak number
x = x + 1;
}
}
s = 0;
c = 0;
for(int i=0;i<x;i++){ // re arraange as per magnitude
for(int j=c;j<x;j++){
if(out_r[in_ps[i]]<out_r[in_ps[j]]){
s=in_ps[i];
in_ps[i]=in_ps[j];
in_ps[j]=s;
}
}
c=c+1;
}
float* f_peaks = new float[sampleRates[o]];
for(int i=0;i<5;i++){ // updating f_peak array (global variable)with descending order
f_peaks[i]=out_im[in_ps[i]];
}
return f_peaks;
}
//------------------------------------------------------------------------------------//
//main.cpp
int data[64]={
14, 30, 35, 34, 34, 40, 46, 45, 30, 4, -26, -48, -55, -49, -37,
-28, -24, -22, -13, 6, 32, 55, 65, 57, 38, 17, 1, -6, -11, -19, -34,
-51, -61, -56, -35, -7, 18, 32, 35, 34, 35, 41, 46, 43, 26, -2, -31, -50,
-55, -47, -35, -27, -24, -21, -10, 11, 37, 58, 64, 55, 34, 13, -1, -7
};
int main(){
const unsigned int SAMPLE_RATE = 48*1000; //48khz
auto result = FFT(data,64,SAMPLE_RATE);
std::cout << result[0] << " " << result[1] << " " << result[2] << " " << result[3] << std::endl;
delete[] result;
return 0;
}

Compute Volume of Cylinder

0 likes • Nov 18, 2022 • 0 views
C++
/*
Algorithm:
Step 1: Get radius of the cylinder from the user and store in variable r
Step 2: Get height of the cylinder from the user and store in variable h
Step 3: Multiply radius * radius * height * pi and store in v
Step 4: Display the volume
*/
#include <iostream>
using namespace std;
int main()
{
float r; //define variable for radius
float h; //define variable for height
float v;
float pi;
pi=3.1416;
cout<<"Enter radius:";
cin>>r;
cout<<"Enter height:";
cin>>h;
v=r*r*h*pi; //compute volume
cout<<"Radius:"<<r<<"\tHeight:"<<h<<endl; //display radius and height
cout<<"\n************************\n";
cout<<"Volume:"<<v<<endl;//display volume
return 0;
}

GCD using Stein's Algorithm

0 likes • Jun 30, 2023 • 2 views
C++
// Iterative C++ program to
// implement Stein's Algorithm
//#include <bits/stdc++.h>
#include <bitset>
using namespace std;
// Function to implement
// Stein's Algorithm
int gcd(int a, int b)
{
/* GCD(0, b) == b; GCD(a, 0) == a,
GCD(0, 0) == 0 */
if (a == 0)
return b;
if (b == 0)
return a;
/*Finding K, where K is the
greatest power of 2
that divides both a and b. */
int k;
for (k = 0; ((a | b) & 1) == 0; ++k)
{
a >>= 1;
b >>= 1;
}
/* Dividing a by 2 until a becomes odd */
while ((a & 1) == 0)
a >>= 1;
/* From here on, 'a' is always odd. */
do
{
/* If b is even, remove all factor of 2 in b */
while ((b & 1) == 0)
b >>= 1;
/* Now a and b are both odd.
Swap if necessary so a <= b,
then set b = b - a (which is even).*/
if (a > b)
swap(a, b); // Swap u and v.
b = (b - a);
} while (b != 0);
/* restore common factors of 2 */
return a << k;
}
// Driver code
int main()
{
int a = 12, b = 780;
printf("Gcd of given numbers is %d\n", gcd(a, b));
return 0;
}