## integer to roman numeral

0 likes • Nov 19, 2022

Python

Loading...

## More Python Posts

# Python code to demonstrate# method to remove i'th character# Naive Method# Initializing Stringtest_str = "CodeCatch"# Printing original stringprint ("The original string is : " + test_str)# Removing char at pos 3# using loopnew_str = ""for i in range(len(test_str)):if i != 2:new_str = new_str + test_str[i]# Printing string after removalprint ("The string after removal of i'th character : " + new_str)

# Python program for implementation of Selection# Sortimport sysA = [64, 25, 12, 22, 11]# Traverse through all array elementsfor i in range(len(A)):# Find the minimum element in remaining# unsorted arraymin_idx = ifor j in range(i+1, len(A)):if A[min_idx] > A[j]:min_idx = j# Swap the found minimum element with# the first elementA[i], A[min_idx] = A[min_idx], A[i]# Driver code to test aboveprint ("Sorted array")for i in range(len(A)):print("%d" %A[i]),

# Python program for implementation of Radix Sort# A function to do counting sort of arr[] according to# the digit represented by exp.def countingSort(arr, exp1):n = len(arr)# The output array elements that will have sorted arroutput = [0] * (n)# initialize count array as 0count = [0] * (10)# Store count of occurrences in count[]for i in range(0, n):index = (arr[i]/exp1)count[int((index)%10)] += 1# Change count[i] so that count[i] now contains actual# position of this digit in output arrayfor i in range(1,10):count[i] += count[i-1]# Build the output arrayi = n-1while i>=0:index = (arr[i]/exp1)output[ count[ int((index)%10) ] - 1] = arr[i]count[int((index)%10)] -= 1i -= 1# Copying the output array to arr[],# so that arr now contains sorted numbersi = 0for i in range(0,len(arr)):arr[i] = output[i]# Method to do Radix Sortdef radixSort(arr):# Find the maximum number to know number of digitsmax1 = max(arr)# Do counting sort for every digit. Note that instead# of passing digit number, exp is passed. exp is 10^i# where i is current digit numberexp = 1while max1/exp > 0:countingSort(arr,exp)exp *= 10# Driver code to test abovearr = [ 170, 45, 75, 90, 802, 24, 2, 66]radixSort(arr)for i in range(len(arr)):print(arr[i]),

my_list = [1, 2, 3, 4, 5]removed_element = my_list.pop(2) # Remove and return element at index 2print(removed_element) # 3print(my_list) # [1, 2, 4, 5]last_element = my_list.pop() # Remove and return the last elementprint(last_element) # 5print(my_list) # [1, 2, 4]

class Rectangle:passclass Square(Rectangle):passrectangle = Rectangle()square = Square()print(isinstance(rectangle, Rectangle)) # Trueprint(isinstance(square, Rectangle)) # Trueprint(isinstance(square, Square)) # Trueprint(isinstance(rectangle, Square)) # False

#Python program to print topological sorting of a DAGfrom collections import defaultdict#Class to represent a graphclass Graph:def __init__(self,vertices):self.graph = defaultdict(list) #dictionary containing adjacency Listself.V = vertices #No. of vertices# function to add an edge to graphdef addEdge(self,u,v):self.graph[u].append(v)# A recursive function used by topologicalSortdef topologicalSortUtil(self,v,visited,stack):# Mark the current node as visited.visited[v] = True# Recur for all the vertices adjacent to this vertexfor i in self.graph[v]:if visited[i] == False:self.topologicalSortUtil(i,visited,stack)# Push current vertex to stack which stores resultstack.insert(0,v)# The function to do Topological Sort. It uses recursive# topologicalSortUtil()def topologicalSort(self):# Mark all the vertices as not visitedvisited = [False]*self.Vstack =[]# Call the recursive helper function to store Topological# Sort starting from all vertices one by onefor i in range(self.V):if visited[i] == False:self.topologicalSortUtil(i,visited,stack)# Print contents of stackprint(stack)g= Graph(6)g.addEdge(5, 2);g.addEdge(5, 0);g.addEdge(4, 0);g.addEdge(4, 1);g.addEdge(2, 3);g.addEdge(3, 1);print("Following is a Topological Sort of the given graph")g.topologicalSort()