• Jan 26, 2023 •AustinLeath
0 likes • 6 views
function printHeap(heap, index, level) { if (index >= heap.length) { return; } console.log(" ".repeat(level) + heap[index]); printHeap(heap, 2 * index + 1, level + 1); printHeap(heap, 2 * index + 2, level + 1); } //You can call this function by passing in the heap array and the index of the root node, which is typically 0, and level = 0. let heap = [3, 8, 7, 15, 17, 30, 35, 2, 4, 5, 9]; printHeap(heap,0,0)
• Nov 19, 2022 •CodeCatch
0 likes • 0 views
arr = [] // empty array const isEmpty = arr => !Array.isArray(arr) || arr.length === 0; // Examples isEmpty([]); // true isEmpty([1, 2, 3]); // false
const countSubstrings = (str, searchValue) => { let count = 0, i = 0; while (true) { const r = str.indexOf(searchValue, i); if (r !== -1) [count, i] = [count + 1, r + 1]; else return count; } }; countSubstrings('tiktok tok tok tik tok tik', 'tik'); // 3 countSubstrings('tutut tut tut', 'tut'); // 4
• Oct 15, 2022 •CodeCatch
1 like • 304 views
const express = require('express') const app = express() const port = 3000 app.get('/', (req, res) => { res.send('Hello World!') }) app.listen(port, () => { console.log(`Example app listening on port ${port}`) })
const insertionSort = arr => arr.reduce((acc, x) => { if (!acc.length) return [x]; acc.some((y, j) => { if (x <= y) { acc.splice(j, 0, x); return true; } if (x > y && j === acc.length - 1) { acc.splice(j + 1, 0, x); return true; } return false; }); return acc; }, []); insertionSort([6, 3, 4, 1]); // [1, 3, 4, 6]
0 likes • 1 view
const kMeans = (data, k = 1) => { const centroids = data.slice(0, k); const distances = Array.from({ length: data.length }, () => Array.from({ length: k }, () => 0) ); const classes = Array.from({ length: data.length }, () => -1); let itr = true; while (itr) { itr = false; for (let d in data) { for (let c = 0; c < k; c++) { distances[d][c] = Math.hypot( ...Object.keys(data[0]).map(key => data[d][key] - centroids[c][key]) ); } const m = distances[d].indexOf(Math.min(...distances[d])); if (classes[d] !== m) itr = true; classes[d] = m; } for (let c = 0; c < k; c++) { centroids[c] = Array.from({ length: data[0].length }, () => 0); const size = data.reduce((acc, _, d) => { if (classes[d] === c) { acc++; for (let i in data[0]) centroids[c][i] += data[d][i]; } return acc; }, 0); for (let i in data[0]) { centroids[c][i] = parseFloat(Number(centroids[c][i] / size).toFixed(2)); } } } return classes; }; kMeans([[0, 0], [0, 1], [1, 3], [2, 0]], 2); // [0, 1, 1, 0]